On the lattice of deductive systems of a BL-algebra
Dumitru Bu§neag ; Dana Piciu
Open Mathematics, Tome 1 (2003), p. 221-237 / Harvested from The Polish Digital Mathematics Library

For a BL-algebra A we denote by Ds(A) the lattice of all deductive systems of A. The aim of this paper is to put in evidence new characterizations for the meet-irreducible elements on Ds(A). Hyperarchimedean BL-algebras, too, are characterized.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:268745
@article{bwmeta1.element.doi-10_2478_BF02476010,
     author = {Dumitru Bu\S neag and Dana Piciu},
     title = {On the lattice of deductive systems of a BL-algebra},
     journal = {Open Mathematics},
     volume = {1},
     year = {2003},
     pages = {221-237},
     zbl = {1040.03047},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02476010}
}
Dumitru Bu§neag; Dana Piciu. On the lattice of deductive systems of a BL-algebra. Open Mathematics, Tome 1 (2003) pp. 221-237. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02476010/

[1] R. Balbes and Ph. Dwinger: Distributive Lattices, University of Missouri Press, 1974.

[2] D. Bu§neag and D. Piciu: “Meet-irreducible ideals in an MV-algebra”, Analele Universitąţii din Craiova, Seria Matematica-Informatica, Vol. XXVIII, (2001), pp. 110–119. | Zbl 1058.06014

[3] D. Buşneag and D. Piciu: “On the lattice of ideals of an MV-algebra”, Scientiae Mathematicae Japonicae, Vol. 56, (2002), pp. 367–372. | Zbl 1019.06004

[4] R. Cignoli, I.M.L. D'Ottaviano, D. Mundici: Algebraic foundation of many-valued reasoning, Kluwer Academic Publ., Dordrecht, 2000.

[5] A. Diego: “Sur les algèbres de Hilbert”, In. Ed. Hermann: Collection de Logique Mathématique, Serie A, XXI, Paris, 1966. | Zbl 0144.00105

[6] G. Grätzer: Lattice theory, W. H. Freeman and Company, San Francisco, 1979.

[7] G. Georgescu and M. Ploščica: “Values and minimal spectrum of an algebraic lattice”, Math. Slovaca, Vol. 52, (2002), pp. 247–253. | Zbl 1008.06006

[8] P. Hájek: Metamathematics of Fuzzy Logic, Kluwer Academic Publ., Dordrecht, 1998.

[9] A. Iorgulescu: “Iséki algebras. Connections with BL-algebras”, to appear in Soft Computing. | Zbl 1075.06009

[10] A. Di Nola, G. Georgescu, A. Iorgulescu: “Pseudo-BL-algebras”, to appear in Multiple Valued Logic. | Zbl 1028.06007

[11] H. Rasiowa, An Algebraic Approach to Non-Classical Logics, PWN and North-Holland Publishing Company, 1974. | Zbl 0299.02069

[12] E. Turunen: Mathematics Behind Fuzzy Logic, Physica-Verlag, 1999. | Zbl 0940.03029