Realization of primitive branched coverings over closed surfaces following the hurwitz approach
Semeon Bogatyi ; Daciberg Gonçalves ; Elena Kudryavtseva ; Heiner Zieschang
Open Mathematics, Tome 1 (2003), p. 184-197 / Harvested from The Polish Digital Mathematics Library

Let V be a closed surface, H⊑π1(V) a subgroup of finite index l and D=[A 1,...,A m] a collection of partitions of a given number d≥2 with positive defect v(D). When does there exist a connected branched covering f:W→V of order d with branch data D and f∶W→V It has been shown by geometric arguments [4] that, for l=1 and a surface V different from the sphere and the projective plane, the corresponding branched covering exists (the data D is realizable) if and only if the data D fulfills the Hurwitz congruence v(D)э0 mod 2. In the case l>1, the corresponding branched covering exists if and only if v(D)э0 mod 2, the number d/l is an integer, and each partition A i ∈D splits into the union of l partitions of the number d/l. Here we give a purely algebraic proof of this result following the approach of Hurwitz [11]. The realization problem for the projective plane and l=1 has been solved in [7,8]. The case of the sphere is treated in [1, 2, 12, 7].

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:268918
@article{bwmeta1.element.doi-10_2478_BF02476007,
     author = {Semeon Bogatyi and Daciberg Gon\c calves and Elena Kudryavtseva and Heiner Zieschang},
     title = {Realization of primitive branched coverings over closed surfaces following the hurwitz approach},
     journal = {Open Mathematics},
     volume = {1},
     year = {2003},
     pages = {184-197},
     zbl = {1039.57001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02476007}
}
Semeon Bogatyi; Daciberg Gonçalves; Elena Kudryavtseva; Heiner Zieschang. Realization of primitive branched coverings over closed surfaces following the hurwitz approach. Open Mathematics, Tome 1 (2003) pp. 184-197. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02476007/

[1] I. Berstein and A.L. Edmonds: “On the construction of branched coverings of low-dimensional manifolds”, Trans. Amer. Math. Soc., Vol. 247, (1979), pp. 87–124. http://dx.doi.org/10.2307/1998776 | Zbl 0359.55001

[2] I. Berstein and A.L. Edmonds: “On the classification of generic branched coverings of surfaces”, Illinois. J. Math., Vol. 28, (1984), pp. 64–82. | Zbl 0551.57001

[3] S. Bogatyi, D.L. Gonçalves, E. Kudryavtseva, H. Zieschang: “Minimal number of roots of surface mappings”, Matem. Zametki, Preprint (2001). | Zbl 0983.55002

[4] S. Bogatyi, D.L. Gonçalves, E. Kudryavtseva, H. Zieschang: “Realization of primitive branched coverings over closed surfaces”, Kluwer Academic Publishers, Preprint (2002). | Zbl 1100.57005

[5] S. Bogatyi, D.L. Gonçalves, H. Zieschang: “The minimal number of roots of surface mappings and quadratic equations in free products”, Math. Z., Vol. 236, (2001), pp. 419–452. | Zbl 0983.55002

[6] A.L. Edmonds: “Deformation of maps to branched coverings in dimension two”, Ann. Math., Vol. 110, (1979), pp. 113–125. http://dx.doi.org/10.2307/1971246 | Zbl 0424.57002

[7] A.L. Edmonds, R.S. Kulkarni, R.E. Stong: “Realizability of branched coverings of surfaces”, Trans. Amer. Math. Soc., Vol. 282, (1984), pp. 773–790. http://dx.doi.org/10.2307/1999265 | Zbl 0603.57001

[8] C.L. Ezell: “Branch point structure of covering maps onto nonorientable surfaces”, Trans Amer. Math. Soc., Vol. 243, (1978), pp. 123–133. http://dx.doi.org/10.2307/1997758 | Zbl 0395.30037

[9] D. Gabai and W.H. Kazez: “The classification of maps of surfaces”, Invent. math., Vol. 90, (1987), pp. 219–242. http://dx.doi.org/10.1007/BF01388704 | Zbl 0633.57002

[10] D.L. Gonçalves and H. Zieschang: “Equations in free groups and coincidence of mappings on surfaces’, Math. Z., Vol. 237, (2001), pp. 1–29. http://dx.doi.org/10.1007/PL00004856 | Zbl 0983.55003

[11] A. Hurwitz: “Über Riemannische Fläche mit gegebenen Verzweigungspunkten”, Math. Ann., Vol. 39, (1891), pp. 1–60. http://dx.doi.org/10.1007/BF01199469

[12] D.H. Husemoller: “Ramified coverings of Riemann surfaces”, Duke Math. J., Vol. 29, (1962), pp. 167–174. http://dx.doi.org/10.1215/S0012-7094-62-02918-6 | Zbl 0196.34001

[13] H. Seifert and W. Threlfall: Lehrbuch der Topologie, Teubner, Leipzig, 1934.

[14] R. Skora: “The degree of a map between surfaces”, Math. Ann., Vol. 276, (1987), pp. 415–423. http://dx.doi.org/10.1007/BF01450838 | Zbl 0595.57011

[15] R. Stöcker and H. Zieschang: Algebraische Topologie, B.G. Teubner, Stuttgart, 1994.