Sets with two associative operations
Teimuraz Pirashvili
Open Mathematics, Tome 1 (2003), p. 169-183 / Harvested from The Polish Digital Mathematics Library

In this paper we consider duplexes, which are sets with two associative binary operations. Dimonoids in the sense of Loday are examples of duplexes. The set of all permutations carries a structure of a duplex. Our main result asserts that it is a free duplex with an explicitly described set of generators. The proof uses a construction of the free duplex with one generator by planary trees.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:268931
@article{bwmeta1.element.doi-10_2478_BF02476006,
     author = {Teimuraz Pirashvili},
     title = {Sets with two associative operations},
     journal = {Open Mathematics},
     volume = {1},
     year = {2003},
     pages = {169-183},
     zbl = {1032.16032},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02476006}
}
Teimuraz Pirashvili. Sets with two associative operations. Open Mathematics, Tome 1 (2003) pp. 169-183. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02476006/

[1] M. Aguiar and F. Sottile: Structures of the Malvenuto-Reutenauer Hopf algebra of permutations, Preprint (2002), http://front.math.ucdavis.edu/math.CO/0203282.

[2] J.-L. Loday: “Algébras ayant deux opérations associatives (digébres)”, C. R. Acad. Sci. Paris Sér. I Math., Vol. 321, (1995), pp. 141–146.

[3] J.-L. Loday: “Dialgebras”, In: Dialgebras and related operads, Lecture Notes in Math. 1763, Springer, Berlin, 2001, pp. 7–66. | Zbl 0999.17002

[4] J.-L. Loday: “Arithmetree”, J. of Algebra, Vol. 258, (2002), pp. 275–309. http://dx.doi.org/10.1016/S0021-8693(02)00510-0 | Zbl 1063.16044

[5] J.-L. Loday and M. O. Ronco: “Order structure on the algebra of permutations and of planar binary trees”, J. Algebraic Combin., Vol. 15, (2002), pp. 253–270 http://dx.doi.org/10.1023/A:1015064508594 | Zbl 0998.05013

[6] J.-L. Loday and M. O. Ronco: Trialgebras and families of polytopes, Preprint (2002), http://front.math.ucdavis.edu/math.AT/0205043.

[7] B. Richter: Dialgebren, Doppelalgebren und ihre Homologie, Diplomarbeit, Universität Bonn, 1997, http://www.math.uni-bonn.de/people/richter/.