On stabilizability of evolution systems of partial differential equations on ℝn×[0,+∞) by time-delayed feedback controlsby time-delayed feedback controls
L. Fardigola
Open Mathematics, Tome 1 (2003), p. 141-156 / Harvested from The Polish Digital Mathematics Library
Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:268684
@article{bwmeta1.element.doi-10_2478_BF02476004,
     author = {L. Fardigola},
     title = {On stabilizability of evolution systems of partial differential equations on $\mathbb{R}$n$\times$[0,+$\infty$) by time-delayed feedback controlsby time-delayed feedback controls},
     journal = {Open Mathematics},
     volume = {1},
     year = {2003},
     pages = {141-156},
     zbl = {1033.93054},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02476004}
}
L. Fardigola. On stabilizability of evolution systems of partial differential equations on ℝn×[0,+∞) by time-delayed feedback controlsby time-delayed feedback controls. Open Mathematics, Tome 1 (2003) pp. 141-156. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02476004/

[1] R. Bellman and K.L. Cook: Differential-Difference Equations, Acad. Press, New York-London, 1963.

[2] R.F. Curtain and A.J. Pritchard: “Robust stabilization of infinite-dimensional systems with respect to coprime factor perturbations”, In: Differential equations, dynamical systems, and control science. A Festschrift in Honor of Lawrence Markus. Marcel Dekker. Lect. Notes Pure Appl. Math., New York, NY, Vol. 152, (1994), pp. 437–456. | Zbl 0792.93097

[3] R. Datko, J. Lagnese, M.P. Polis: “An example of the effect of time delays in boundary feedback stabilization of wave equations”, SIAM J. Control. Optim., Vol. 24, (1986), pp. 152–156. http://dx.doi.org/10.1137/0324007 | Zbl 0592.93047

[4] L.V. Fardigola: “On a nonlocal two-point boundary-value problem in a layer for an equation with variable coefficients” (in Russian), Sibirsk. Mat. Zh., Vol. 38, (1997), pp. 424–438, English translation in: Siberian Math. J., Vol. 38, (1997), pp. 367–379.

[5] L.V. Fardigola: “On stabilizability of evolution systems of partial differential equations on ℝn ×[0,+∞) by feedback control”, Visnyk Kharkivs'kogo Universytetu. Ser. Matematyka, Prykladna Matematyka i Mekhanika, Vol. 475, (2000), pp. 183–194.

[6] L.V. Fardigola: “A criterion for stabilizability of differential equations with constant coefficients on the whole space”, (in Russian), Differ. uravn., Vol. 36, (2000), pp. 1699–1706, English translation in: Differ. Equ., Vol. 36, (2000), pp. 1863–1871. | Zbl 1017.78522

[7] I.M. Gelfand and G.E. Shilov: Generalized Functions (in Russian), Vol. 3, Moskow, 1958.

[8] L. Hörmander: The analysis of linear differential operators. V. 2: Differential operators with constant coefficients, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1983. | Zbl 0521.35002

[9] L. Hörmander: “On the division of distributions by polynomials”, Ark. Mat., Vol. 3, (1958), pp. 555–568. | Zbl 0131.11903

[10] N. Levan: “The left shift semigroup approach to stability of distributed systems”, J. Math. Anal. Appl., Vol. 152, (1990), pp. 354–367. http://dx.doi.org/10.1016/0022-247X(90)90070-V | Zbl 0783.47055

[11] S. Łojasiewicz: “Sur le problème de la division”, Studia Math., Vol. 18, (1959), pp. 87–136. | Zbl 0115.10203

[12] H. Logemann: “Destabilizing effect of small time delays on feedback controlled descriptor systems”, Linear Algebra and its Appl., Vol. 272, (1998), pp. 131–153. http://dx.doi.org/10.1016/S0024-3795(97)00328-5

[13] L. Pandolfi: “On feedback stabilization of functional differential equations”, Boll. Unione Mat. Ital., IV Ser. 11, Suppl. Fasc., Vol. 3, (1975), pp. 626–635. | Zbl 0318.93027

[14] I.G. Petrowsky: “On the Cauchy problem for systems of linear partial differential equations in a domain of nonanalitic functions”, Bull. Mosk. Univ., Ser. A, No. 7, (1938), pp. 1–72.

[15] L.S. Pontriagin: “On zeroz on some elementary transcendence functions”, Izv. AN SSSR, Ser. Mat., Vol. 6, (1942), pp. 115–134.

[16] R. Rebarber and S. Townley: “Robustness with respect to delay for exponential stability of distributed parameter systems”, SIAM J. Contr. Optim., Vol. 37, (1998), pp. 230–244. http://dx.doi.org/10.1137/S0363012996312453 | Zbl 0919.93041

[17] A. Seidenberg: “A new decision method for elementary algebra”, Ann. Math., Vol. 2, (1954), pp. 365–374. http://dx.doi.org/10.2307/1969640 | Zbl 0056.01804

[18] J.M. Sloss, I.S. Sadek, J.C. Bruch, S. Aldali: “Stabilization of structurally damped systems by time-delayed feedback control”, Dyn. Stab. Syst., Vol. 7, (1992), pp. 173–178. | Zbl 0771.93031

[19] C.C. Travis and G.F. Webb: “Existence and stability for partial functional differential equations”, Trans. Am. Math, Soc., Vol. 200, (1974), pp. 395–418. http://dx.doi.org/10.2307/1997265 | Zbl 0299.35085