The paper explains the notion of projectively equivariant quantization. It gives a sketch of Martin Bordemann's proof of the existence of projectively equivariant quantization on arbitrary manifolds.
@article{bwmeta1.element.doi-10_2478_BF02475977, author = {Pierre Lecomte}, title = {On Martin Bordemann's proof of the existence of projectively equivariant quantizations}, journal = {Open Mathematics}, volume = {2}, year = {2004}, pages = {793-800}, zbl = {1125.53070}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02475977} }
Pierre Lecomte. On Martin Bordemann's proof of the existence of projectively equivariant quantizations. Open Mathematics, Tome 2 (2004) pp. 793-800. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02475977/
[1] F. Boniver, H. Hansoul, P. Mathonet and N. Poncin: “Equivariant symbol calculus for differential operators acting on forms”, Lett. Math. Phys., Vol. 62(3), (2002), pp. 219–232. http://dx.doi.org/10.1023/A:1022251607566 | Zbl 1035.17034
[2] M. Bordemann: “Sur l'existence d'une prescription d'ordre naturelle projectivement invariante” (arXiv:math.DG/0208171v1 22Aug2002).
[3] S. Bouarroudj: “Projectively equivariant quantization map”, Lett. Math. Phys., Vol. 51(4), (2000), pp. 265–274. http://dx.doi.org/10.1023/A:1007692910159 | Zbl 1067.53071
[4] S. Bouarroudj: “Formula for the projectively invariant quantization on degree three”, C. R. Acad. Sci. Paris Sér. I Math., Vol. 333(4), (2001), pp. 34–346. | Zbl 0997.53015
[5] C. Duval, P. Lecomte and V. Ovsienko: “Conformally equivariant quantization: existence and uniqueness”, Ann. Inst. Fourier (Grenoble), Vol. 49(6), (1999), pp. 1999–2029. | Zbl 0932.53048
[6] S. Kobayashi: Transformation groups in differential geometry, Springer, Berlin, 1972. | Zbl 0246.53031
[7] P. Lecomte: “Towards projectively equivariant Quantization. Noncommutative geometry and string theory”, Meada at al. (Eds.): Progress in theoretical physics, Vol. 144, (2001), pp. 125–132. | Zbl 1012.53069
[8] P. Lecomte: “On the cohomology of sl(m+1,ℝ) acting on differential Operators and sl(m+1,ℝ) symbols”, Indaga. Math., NS, Vol. 11(1), (2000), pp. 95–114. http://dx.doi.org/10.1016/S0019-3577(00)88577-8
[9] P. Lecomte and V. Ovsienko: “Projectively equivariant Symbol Calculus”, Letters in Math. Phys., Vol. 49, (1999), pp. 173–196. http://dx.doi.org/10.1023/A:1007662702470 | Zbl 0989.17015
[10] P. Lecomte and V. Ovsienko: “Cohomology of the Vector Fields Lie Algebra and Modules of differential Operators on a smooth Manifold”, Comp. Math., Vol. 124, (2000), pp. 95–110. http://dx.doi.org/10.1023/A:1002447724679 | Zbl 0968.17007
[11] P. Mathonet and F. Boniver: “Maximal subalgebras of vector fields for equivariant quantizations”, J. Math. Phys., Vol. 42(2), (2001), pp. 582–589. http://dx.doi.org/10.1063/1.1332782 | Zbl 1032.17041