“A Calculus of Sequences” started in 1936 by Ward constitutes the general scheme for extensions of classical operator calculus of Rota-Mullin considered by many afterwards and after Ward. Because of the notation we shall call the Ward's calculus of sequences in its afterwards elaborated form-a ψ-calculus. The ψ-calculus in parts appears to be almost automatic, natural extension of classical operator calculus of Rota-Mullin or equivalently-of umbral calculus of Roman and Rota. At the same time this calculus is an example of the algebraization of the analysis-here restricted to the algebra of polynomials. Many of the results of ψ-calculus may be extended to Markowsky Q-umbral calculus where Q stands for a generalized difference operator, i.e. the one lowering the degree of any polynomial by one. This is a review article based on the recent first author contributions [1]. As the survey article it is supplemented by the short indicatory glossaries of notation and terms used by Ward [2], Viskov [7, 8], Markowsky [12], Roman [28–32] on one side and the Rota-oriented notation on the other side [9–11, 1, 3, 4, 35] (see also [33]).
@article{bwmeta1.element.doi-10_2478_BF02475976, author = {Andrzej Kwa\'sniewski and Ewa Borak}, title = {Extended finite operator calculus-an example of algebraization of analysis}, journal = {Open Mathematics}, volume = {2}, year = {2004}, pages = {767-792}, zbl = {1120.05008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02475976} }
Andrzej Kwaśniewski; Ewa Borak. Extended finite operator calculus-an example of algebraization of analysis. Open Mathematics, Tome 2 (2004) pp. 767-792. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02475976/
[1] A.K. Kwaśniewski: “On Simple Characterisations of Sheffer ψ-polynomials and Related Propositions of the Calculus of Sequences”, Bulletin de la Soc. des Sciences et des Letters de Łódź 52 SERIE Reserchers sur les deformations, Vol. 36(45), (2002) (ArXiv: math.CO/0312397). | Zbl 1088.39509
[2] M. Ward: “A Calculus of Sequences”, Amer. J. Math., Vol. 58(255), (1936).
[3] A.K. Kwaśniewski: “Towards ψ-extension of Finite Operator Calculus of Rota”, Rep. Math. Phys., Vol. 48(3, (2001) (ArXiv: math.CO/0402078 Feb 2004).
[4] A.K. Kwaśniewski: “On extended finite operator calculus of Rota and quantum groups”, Integral Transforms and Special Functions, Vol. 2(4), (2001). | Zbl 1022.39020
[5] R.P. Boas and R.C. Buck Jr.: “Polynomials Defined by Generating Relations”, Am. Math. Monthly, Vol. 63(626), (1959). | Zbl 0073.05802
[6] R.P. Boas and R.C. Buck Jr.: Polynomial Expansions of Analytic Functions, Springer, Berlin, 1964. | Zbl 0116.28105
[7] O.V. Viskov: “Operator characterization of generalized Appel polynomials”, Soviet Math. Dokl., Vol. 6(1521), (1975).
[8] O.V. Viskov: “On the basis in the space of polynomials”, Soviet Math. Dokl., Vol. 19(250), (1978). | Zbl 0393.15004
[9] G.-C. Rota and R. Mullin: On the foundations of combinatorial theory, III. Theory of Binomial Enumeration in “Graph Theory and Its Applications”, Academic Press, New York, 1970.
[10] G.C. Rota, D. Kahaner and A. Odlyzko: “On the Foundations of combinatorial theory. VIII. Finite operator calculus”, J. Math. Anal. Appl., Vol. 42(684), (1973). | Zbl 0267.05004
[11] G.C. Rota: Finite Operator Calculus, Academic Press, New York, 1975.
[12] G. Markowsky: “Differential operators and the Theory of Binomial Enumeration”, J. Math. Anal. Appl., Vol. 63(145), (1978). | Zbl 0376.05002
[13] A.K. Kwaśniewski: “Higher Order Recurrences for Analytical Functions of Tchebysheff Type”, Advances in Applied Clifford Algebras, Vol. 9(41), (1999). | Zbl 1065.11501
[14] O.V. Viskov: “Noncommutative Approach to Classical Problems of Analysis”, Trudy Matiematicz'eskovo Instituta AN SSSR, Vol. 177(21), (1986). | Zbl 0629.41017
[15] A. Di Bucchianico and D. Loeb: “A Simpler Characterization of Sheffer Polynomials, Studies in Applied Mathematics”, J. Math. Anal. Appl., Vol. 92(1), (1994). | Zbl 0795.05018
[16] N.Ya. Sonin: “Rjady Ivana Bernulli”, Izw. Akad. Nauk, Vol. 7(337), (1897).
[17] C. Graves: “On the principles which regulate the interhange of symbols in certain symbolic equations”, Proc. Royal Irish Academy, Vol. 6(144), (1853–1857).
[18] P. Feinsilver and R. Schott: Algebraic Structures and Operator Calculus, Kluwer Academic Publishers, New York, 1993. | Zbl 0782.60015
[19] O.V. Viskov: “Newton-Leibnitz Formula and the Taylor Expansion”, Integral Transforms and Special Functions, Vol. 12), (1997).
[20] S. Pincherle and U. Amaldi: Le operazioni distributive e le loro applicazioni all'analisi, N. Zanichelli, Bologna, 1901.
[21] S.G. Kurbanov and V.M. Maximov: “Mutual Expansions of Differential operators and Divided Difference Operators”, Dokl. Akad. Nauk Uz. SSSR, Vol. 4(8), (1986).
[22] A. Di Bucchianico and D. Loeb: Integral Transforms and Special Functions, Vol. 4(49), (1996). | Zbl 0864.05007
[23] P. Kirschenhofer: “Binomialfolgen, Shefferfolgen und Faktorfolgen in der q-Analysis”, Sitzunber. Abt. II Oster. Ackad. Wiss. Math. Naturw. Kl., Vol. 188(263), (1979).
[24] A. Di Bucchianico and D. Loeb: “Sequences of Binomial Type with persistent roots”, J. Math. Anal. Appl., Vol. 199(39), (1996). | Zbl 0853.05016
[25] F.H. Jackson: “q-difference equations”, Quart. J. Pure and Appl. Math., Vol. 41(193), (1910). | Zbl 41.0502.01
[26] F.H. Jackson: “The q-integral analogous to Borels integral”, Messenger of Math., Vol. 47(57), (1917).
[27] F.H. Jackson: “Basic Integration”, Quart. J. Math., Vol. 2(1), (1951). | Zbl 0042.07502
[28] S.M. Roman: “The Theory of Umbral Calculus. I”, J. Math. Anal. Appl., Vol. 87(58), (1982). | Zbl 0499.05009
[29] S.M. Roman: “The Theory of Umbral Calculus. II”, J. Math. Anal. Appl., Vol. 89(290), (1982). | Zbl 0526.05007
[30] S.M. Roman: “The Theory of Umbral Calculus. III”, J. Math. Anal. Appl., Vol. 95(528), (1983). | Zbl 0526.05008
[31] S.M. Roman: The umbral calculus, Academic Press, New York, 1984. | Zbl 0536.33001
[32] S.R. Roman: “More on the umbral calculus with emphasis on the q-umbral calculus”, J. Math. Anal. Appl., Vol. 107(222), (1985). | Zbl 0654.05004
[33] A.K. Kwasniewski and E. Gradzka: “Further remarks on ψ-extensions of finite operator calculus”, Rendiconti del Circolo Matematico di Palermo Serie II, Suppl., 69(117), (2002). | Zbl 1018.05008
[34] J.F. Steffensen: “The poweroid an extension of the mathematical notion of power”, Acta Mathematica, Vol. 73(333), (1941). | Zbl 0026.20805
[35] A.K. Kwaśniewski: “Main theorems of extended finite operator calculus”, Integral Transforms and Special Functions, Vol. 14(499), (2003). | Zbl 1041.05007
[36] A.K. Kwaśniewski: “The logarithmic Fib-binomial formula”, Advan. Stud. Contemp. Math., Vol. 9(1), (2004) (19–26 ArXiv: math.CO/0406258 13 June 2004). | Zbl 1073.11010
[37] A.K. Kwaśniewski: “On ψ-basic Bernoulli-Ward polynomials”, Bull. Soc. Sci. Lett. Lodz, in print (ArXiv: math.CO/0405577 30 May 2004). | Zbl 1091.33012
[38] A.K. Kwaśniewski: “ψ-Appell polynomials' solutions of the-difference calculus nonhomogeneous equation”, Bull. Soc. Sci. Lett. Lodz, in print (ArXiv: math. CO/0405578 30 May 2004). | Zbl 1096.39021
[39] A.K. Kwaśniewski: “On ψ-umbral difference Bernoulli-Taylor formula with Cauchy type remainder”, Bull. Soc. Sci. Lett. Lodz, in print (ArXiv: math.GM/0312401 December 2003).
[40] A.K. Kwaśniewski: “First contact remarks on umbra difference calculus references streams”, Bull. Soc. Sci. Lett. Lodz, in print (ArXiv: math.CO/0403139 v1 8 March 2004).
[41] A.K. Kwaśniewski: “On extended umbral calculus, oscillator-like algebras and Generalized Clifford Algebra”, Advances in Applied Clifford Algebras, Vol. 11(2), (2001), pp. 267–279 (ArXiv: math.QA/0401083 January 2004). | Zbl 1047.15015