An introduction to finite fibonomial calculus
Ewa Krot
Open Mathematics, Tome 2 (2004), p. 754-766 / Harvested from The Polish Digital Mathematics Library

This is an indicatory presentation of main definitions and theorems of Fibonomial Calculus which is a special case of ψ-extented Rota's finite operator calculus [7].

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:268756
@article{bwmeta1.element.doi-10_2478_BF02475975,
     author = {Ewa Krot},
     title = {An introduction to finite fibonomial calculus},
     journal = {Open Mathematics},
     volume = {2},
     year = {2004},
     pages = {754-766},
     zbl = {1160.11308},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02475975}
}
Ewa Krot. An introduction to finite fibonomial calculus. Open Mathematics, Tome 2 (2004) pp. 754-766. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02475975/

[1] B. Bondarienko: Generalized Pascal Triangles and Pyramids- Their Fractals, graphs and Applications, A reproduction by the Fibonacci Association 1993, Santa Clara University, Santa Clara, CA.

[2] R.L. Graham, D.E. Knuth and O. Patashnik: Concrete mathematics. A Foundation for Computer Science, Addison-Wesley Publishing Company, Inc., Massachusetts, 1994. | Zbl 0836.00001

[3] C. Graves: “On the principles which regulate the interchange of symbols in certain symbolic equations”, Proc. Royal Irish Academy, Vol. 6, (1853–1857), pp. 144–152.

[4] W.E. Hoggat, Jr: Fibonacci and Lucas numbers. A publication of The Fibonacci Association, University of Santa Clara, CA 95053.

[5] D. Jarden: “Nullifying coefficiens”, Scripta Math., Vol. 19, (1953), pp. 239–241.

[6] E. Krot: “ψ-extensions of q-Hermite and q-Laguerre Polynomials-properties and principal statements”, Czech. J. Phys., Vol. 51 (12), (2001), pp. 1362–1367. http://dx.doi.org/10.1023/A:1013382322526 | Zbl 1057.33013

[7] A.K. Kwaśniewski: “Towards ψ-Extension of Rota's Finite Operator Calculus”, Rep. Math. Phys., Vol. 47(305), (2001), pp. 305–342. http://dx.doi.org/10.1016/S0034-4877(01)80092-6 | Zbl 0994.05019

[8] G. Markowsky: “Differential operators and the Theory of Binomial Enumeration”, Math. Anal. Appl., Vol. 63 (145), (1978). | Zbl 0376.05002

[9] S. Pincherle and U. Amaldi: Le operazioni distributive e le loro applicazioni all analisi, N. Zanichelli, Bologna, 1901.

[10] G.-C. Rota: Finite Operator Calculus, Academic Press, New York, 1975.

[11] G.C. Rota and R. Mullin: “On the Foundations of cCombinatorial Theory, III: Theory of binominal Enumeration”, In: Graph Theory and its Applications, Academic Press, New York, 1970.

[12] http://www-groups.dcs.st-and.ac.uk/history/Mathematicians/Fibonacci.html

[13] A.K. Kwaśniewski: “Information on Some Recent Applications of Umbral Extensions to Discrete Mathematics”, ArXiv:math.CO/0411145, Vol. 7, (2004), to be presented at ISRAMA Congress, Calcuta-India, December 2004 | Zbl 1087.05010