We define notion of a quaternionic and para-quaternionic CR structure on a (4n+3)-dimensional manifold M as a triple (ω1,ω2,ω3) of 1-forms such that the corresponding 2-forms satisfy some algebraic relations. We associate with such a structure an Einstein metric on M and establish relations between quaternionic CR structures, contact pseudo-metric 3-structures and pseudo-Sasakian 3-structures. Homogeneous examples of (para)-quaternionic CR manifolds are given and a reduction construction of non homogeneous (para)-quaternionic CR manifolds is described.
@article{bwmeta1.element.doi-10_2478_BF02475974, author = {Dmitri Alekseevsky and Yoshinobu Kamishima}, title = {Quaternionic and para-quaternionic CR structure on (4n+3)-dimensional manifolds}, journal = {Open Mathematics}, volume = {2}, year = {2004}, pages = {732-753}, zbl = {1116.53046}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02475974} }
Dmitri Alekseevsky; Yoshinobu Kamishima. Quaternionic and para-quaternionic CR structure on (4n+3)-dimensional manifolds. Open Mathematics, Tome 2 (2004) pp. 732-753. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02475974/
[1] D.V. Alekseevsky, V. Cortés: “Classification of pseudo-Riemannian symmetric spaces of quaternionic Kähler type”, Preprint Institut Eli Cartan, Vol. 11, (2004). | Zbl 1077.53040
[2] D.A. Alekseevsky and Y. Kamishima: “Locally pseudo-conformal quaternionic CR structure”, preprint. | Zbl 1223.53054
[3] A. Besse: Einstein manifolds, Springer Verlag, 1987.
[4] O. Biquard: Quaternionic structures in mathematics and physics, World Sci. Publishing, Rome, 1999, River Edge, NJ, 2001, pp. 23–30. | Zbl 0993.53017
[5] D.E. Blair: “Riemannian geometry of contact and symplectic manifolds Contact manifolds”, Birkhäuser, Progress in Math., Vol. 203, (2002). | Zbl 1011.53001
[6] C.P. Boyer, K. Galicki and B.M. Mann: “The geometry and topology of 3-Sasakian manifolds”, Jour. reine ange. Math., Vol. 455, (1994), pp. 183–220. | Zbl 0889.53029
[7] N.J. Hitchin: “The self-duality equations on a Riemannian surface”, Proc. London Math. Soc., Vol. 55, (1987), pp. 59–126. | Zbl 0634.53045
[8] S. Ishihara: “Quaternion Kählerian manifolds”, J. Diff. Geom., Vol. 9, (1974), pp. 483–500. | Zbl 0297.53014
[9] S. Ishihara: “Quaternion Kählerian manifolds and fibred Riemannian spaces with Sasakian 3-structure”, Kōdai Math. Sem. Rep., Vol. 25, (1973), pp. 321–329. | Zbl 0267.53023
[10] S. Ishihara and M. Konishi: “Real contact and complex contact structure”, Sea. Bull. Math., Vol. 3, (1979), pp. 151–161. | Zbl 0429.53026
[11] W. Jelonek: “Positive and negative 3-K-contact structures”, Proc. of A.M.S., Vol. 129, (2000), pp. 247–256. http://dx.doi.org/10.1090/S0002-9939-00-05527-1 | Zbl 0977.53074
[12] R. Kulkarni: “Proper actions and pseudo-Riemannian space forms”, Advances in Math., Vol. 40, (1981), pp. 10–51. http://dx.doi.org/10.1016/0001-8708(81)90031-1
[13] T. Kashiwada: “On a contact metric structure”, Math. Z., Vol. 238, (2001), pp. 829–832. http://dx.doi.org/10.1007/s002090100279 | Zbl 1004.53058
[14] M. Konishi: “On manifolds with Sasakian 3-structure over quaternionic Kaehler manifolds”, |emphKodai Math. Jour., Vol. 29, (1975), pp. 194–200. | Zbl 0308.53035
[15] S. Kobayashi and K. Nomizu: Foundations of differential geometry I, II, Interscience John Wiley & Sons, New York, 1969. | Zbl 0175.48504
[16] A. Swann: “Aspects symplectiques de la géométrie quaternionique”, C. R. Acad. Sci. Paris, Seria I, Vol. 308, (1989), pp. 225–228. | Zbl 0661.53023
[17] S. Tanno: “Killing vector fields on contact Riemannian manifolds and fibering related to the Hopf fibrations”, |emphTôhoku Math. Jour., Vol. 23, (1971), pp. 313–333.
[18] S. Tanno: “Remarks on a triple of K-contact structures”, Tôhoku Math. Jour., Vol. 48, (1996), pp. 519–531. | Zbl 0881.53040
[19] J. Wolf: Spaces of constant curvature, McGraw-Hill, Inc., 1967. | Zbl 0162.53304