Folding theory applied to BL-algebras
Young Jun ; Jung Ko
Open Mathematics, Tome 2 (2004), p. 584-592 / Harvested from The Polish Digital Mathematics Library

The notion of n-fold grisly deductive systems is introduced. Some conditions for a deductive system to be an n-fold grisly deductive system are provided. Extension property for n-fold grisly deductive system is established.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:268777
@article{bwmeta1.element.doi-10_2478_BF02475965,
     author = {Young Jun and Jung Ko},
     title = {Folding theory applied to BL-algebras},
     journal = {Open Mathematics},
     volume = {2},
     year = {2004},
     pages = {584-592},
     zbl = {1060.03507},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02475965}
}
Young Jun; Jung Ko. Folding theory applied to BL-algebras. Open Mathematics, Tome 2 (2004) pp. 584-592. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02475965/

[1] L. Biacino and G. Gerla: “An extension principle for closure operators”, J. Math. Anal. Appl., Vol. 198, (1996), pp. 1–24. http://dx.doi.org/10.1006/jmaa.1996.0064 | Zbl 0855.54007

[2] A. DiNola, G. Georgescu and L. Leustean. “Boolean products of BL-algebras”, J. Math. Appl., Vol. 251, (2000), pp. 106–131. http://dx.doi.org/10.1006/jmaa.2000.7024

[3] J.A. Goguen: “L-fuzzy sets”, J. Math. Appl., Vol. 18, (1967), pp. 145–174. http://dx.doi.org/10.1016/0022-247X(67)90189-8

[4] P. Hájek: Metamathematices of Fuzzy Logic, Kluwer Academic Publishers, Dordrecht, 1998.

[5] Y.B. Jun and J.M. Ko: “Deductive systems of BL-algebras”, Bull. Korean Math. Soc., [submitted]. | Zbl 1333.03249

[6] Y.B. Jun and J.M. Ko: “Grisly deductive systems of BL-algebras”, Bull. Korean Math. Soc., [submitted]. | Zbl 1076.03041

[7] J.M. Ko and Y.C. Kim: “Some properties of BL-algebras”, J. Korea Fuzzy Logic and Intelligent Systems, Vol. 11(3), (2001), pp. 286–291.

[8] J.M. Ko and Y.C. Kim: “Closure operators on BL-algebras”, Comm. Korean Math. Soc., Vol. 19(2), (2004), pp. 219–232. | Zbl 1101.03316

[9] E. Turunen: “Boolean deductive systems of BL-algebras”, Arch. Math. Logic, Vol. 40, (2001), pp. 467–473. http://dx.doi.org/10.1007/s001530100088 | Zbl 1030.03048

[10] E. Turunen: Mathematics behind fuzzy logic, Springer-Verlag Co., Heidelberg, 1999. | Zbl 0940.03029

[11] L.A. Zadeh: “From circuit theory to system theory”, Proc. Inst. Radio Eng., Vol. 50, (1962), pp.856–865.

[12] L.A. Zadeh: “Fuzzy sets”, Inform. and Control, Vol. 8, (1965) pp. 338–353. http://dx.doi.org/10.1016/S0019-9958(65)90241-X | Zbl 0139.24606