In this paper we prove the existence of periodic solutions for nonlinear impulsive viable problems monitored by differential inclusions of the type x′(t)∈F(t,x(t))+G(t,x(t)). Our existence theorems extend, in a broad sense, some propositions proved in [10] and improve a result due to Hristova-Bainov in [13].
@article{bwmeta1.element.doi-10_2478_BF02475964, author = {Tiziana Cardinali and Raffaella Servadei}, title = {On the existence of solutions for nonlinear impulsive periodic viable problems}, journal = {Open Mathematics}, volume = {2}, year = {2004}, pages = {573-583}, zbl = {1070.34015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02475964} }
Tiziana Cardinali; Raffaella Servadei. On the existence of solutions for nonlinear impulsive periodic viable problems. Open Mathematics, Tome 2 (2004) pp. 573-583. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02475964/
[1] D.D. Bainov, V. Covachev: Impulsive differential equations with a small parameter, World Scientific, Series on Advances in Math. for Applied sciences, 1994.
[2] D.D. Bainov, P.S. Simeonov: Systems with impulsive effect. Stability, theory and applications, Ellis Horwood Series in Maths and Appl., Ellis Horwood, Chicester, 1989.
[3] D.D. Bainov, P.S. Simeonov: Impulsive differential equations. Asymptotic properties of the solutions, World Scientific, Series on Advances in Math. for Applied Sciences, 1995.
[4] M. Benchohra, A. Boucherif: “Initial value problems for impulsive differential inclusions of first order”, Diff. Eqns. Dyn. Syst., Vol. 8, (2000), pp. 51–66. | Zbl 0988.34005
[5] M. Benchohra, A. Boucherif: “An existence result for first order initial value problems for impulsive differential inclusions in Banach spaces”, Arch. Math., Vol. 36, (2000), pp. 159–169. | Zbl 1054.34099
[6] M. Benchohra, A. Boucherif, J.J. Nieto: “On initial value problems for a class of first order impulsive differential inclusions”, Disc. Math. Diff. Incl. Control Optim., Vol. 21, (2001), pp. 159–171. | Zbl 1005.34007
[7] M. Benchohra, J. Henderson, S.K. Ntouyas: “On a periodic boundary value problem for first order impulsive differential inclusions”, Dyn. Syst. Appl., Vol. 10, (2001), pp. 477–488. | Zbl 1019.34035
[8] M. Benchohra, J. Henderson, S.K. Ntouyas, A. Ouahabi: “Existence results for impulsive lower semicontinuous differential inclusions”, Int. J. Pure Appl. Math., Vol. 1, (2002), pp. 431–443. | Zbl 1014.34005
[9] M. Benchohra, J. Henderson, S.K. Ntouyas, A. Ouahabi: “Existence results for impulsive functional and neutral functional differential inclusions with lower semicontinuous right hand side”, Electron. J. Math. Phys. Sci., Vol. 1, (2002), pp. 72–91. | Zbl 1007.34076
[10] T. Cardinali, R. Servadei: “Periodic solutions of nonlinear impulsive differential inclusions with constraints”, Proc. AMS, Vol. 132, (2004), pp. 2339–2349. http://dx.doi.org/10.1090/S0002-9939-04-07343-5 | Zbl 1069.34004
[11] B.C. Dhage, A. Boucherif, S.K. Ntouyas: “On periodic boundary value problems of first-order perturbed impulsive differential inclusions”, Electron. J. Diff. Eqns., Vol. 84, (2004), pp. 1–9. | Zbl 1062.34008
[12] M. Frigon, D. O’Regan: “Existence results for first order impulsive differential equations”, J. Math. Anal. Appl., Vol. 193, (1995), pp. 96–113. http://dx.doi.org/10.1006/jmaa.1995.1224
[13] S.G. Hristova, D.D. Bainov: “Existence of periodic solutions of nonlinear systems of differential equations with impulse effect”, J. Math. Anal. Appl., Vol. 125, (1987), pp. 192–202. http://dx.doi.org/10.1016/0022-247X(87)90174-0
[14] S. Hu, N.S. Papageorgiou: Handbook of multivalued analysis, Kluwer, Dordrecht, The Netherlands, 1997. | Zbl 0887.47001
[15] V. Lakshmikantham, D.D. Bainov, P.S. Simeonov: Theory of impulsive differential equations, World Scientific, Singapore, 1989.
[16] V.D. Mil’man, A.D. Myshkis: “On the stability of motion in the presence of impulses”, Siberian Math. J., Vol. 1, (1960), pp. 233–237.
[17] A.M. Samoilenko, N.A. Perestyuk: “Differential equations with impulse effect”, Visca Skola, Kiev, 1987. [in Russian]
[18] P.J. Watson: “Impulsive differential inclusions”, Nonlin. World, Vol. 4, (1997), pp. 395–402. | Zbl 0944.34007