In the present paper, we obtain two new formulas of the Apostol-Bernoulli polynomials (see On the Lerch Zeta function. Pacific J. Math., 1 (1951), 161–167.), using the Gaussian hypergeometric functions and Hurwitz Zeta functions respectively, and give certain special cases and applications.
@article{bwmeta1.element.doi-10_2478_BF02475959, author = {Qiu-Ming Luo}, title = {On the apostol-bernoulli polynomials}, journal = {Open Mathematics}, volume = {2}, year = {2004}, pages = {509-515}, zbl = {1073.33001}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02475959} }
Qiu-Ming Luo. On the apostol-bernoulli polynomials. Open Mathematics, Tome 2 (2004) pp. 509-515. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02475959/
[1] T.M. Apostol: “On the Lerch Zeta function”, Pacific J. Math., Vol. 1, (1951), pp. 161–167. | Zbl 0043.07103
[2] T.M. Apostol: Introduction to analytic number theory, Springer-Verlag, New York/Heidelberg/Berlin, 1976.
[3] L. Comtet: Advanced Combinatorics: The Art of Finite and Infinite Expansions, Reidel, Dordrecht/Boston, 1974. (Translated from the French by J.W. Nienhuys) | Zbl 0283.05001
[4] H.M. Srivastava: “Some formulae for the Bernoulli and Euler polynomials at rational arguments”, Math. Proc. Cambridge Philos. Soc., Vol. 129, (2000), pp. 77–84. http://dx.doi.org/10.1017/S0305004100004412 | Zbl 0978.11004
[5] H.M. Srivastava and Junesang Choi: Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht/Boston/London, 2001. | Zbl 1014.33001
[6] H.M. Srivastava, P.G. Todorov: “An explicit formula for the generalized Bernoulli polynomials”, J. Math. Anal. Appl., Vol. 130, (1988), pp. 509–513. http://dx.doi.org/10.1016/0022-247X(88)90326-5
[7] H.W. Gould: “Explicit formulas for Bernoulli numbers” Amer. Math. Monthly, Vol. 79, (1972), pp. 44–51. http://dx.doi.org/10.2307/2978125 | Zbl 0227.10010
[8] Qiu-Ming Luo: “The Bernoulli Polynomials Involving the Gaussian Hypergeometric Functions”, [submitted].
[9] D. Cvijovic and J. Klinowski: “New formula for The Bernoulli and Euler polynomials at rational arguments”, Proc. Amer. Math. Soc., Vol. 123, (1995), pp. 1527–1535. http://dx.doi.org/10.2307/2161144 | Zbl 0827.11012
[10] M. Abramowitz and I.A. Stegun (Eds): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, 4th printing, Washington, 1965.