On the riemann zeta-function and the divisor problem
Aleksandar Ivić
Open Mathematics, Tome 2 (2004), p. 494-508 / Harvested from The Polish Digital Mathematics Library

Let Δ(x) denote the error term in the Dirichlet divisor problem, and E(T) the error term in the asymptotic formula for the mean square of ς12+it . If E*t=Et-2πΔ*t/2π with Δ*x=-Δx+2Δ2x-12Δ4x , then we obtain 0TE*t4dteT16/9+ε . We also show how our method of proof yields the bound r=1Rtr-Gtr+Gς12+it2dt4eT2+eG-2+RG4Tε , where T 1/5+ε≤G≪T, T

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:268928
@article{bwmeta1.element.doi-10_2478_BF02475958,
     author = {Aleksandar Ivi\'c},
     title = {On the riemann zeta-function and the divisor problem},
     journal = {Open Mathematics},
     volume = {2},
     year = {2004},
     pages = {494-508},
     zbl = {1116.11067},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02475958}
}
Aleksandar Ivić. On the riemann zeta-function and the divisor problem. Open Mathematics, Tome 2 (2004) pp. 494-508. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02475958/

[1] F.V. Atkinson: “The mean value of the zeta-function on the critical line”, Quant. J. Math. Oxford, Vol. 10, (1939), pp. 122–128. | Zbl 0022.02002

[2] F.V. Atkinson: “The mean value of the Riemann zeta-function”, Acta Math., Vol. 81, (1949), pp. 353–376. http://dx.doi.org/10.1007/BF02395027 | Zbl 0036.18603

[3] D.R. Heath-Brown: “The twelfth power moment of the Riemann zeta-function”, Quart. J. Math. (Oxford), Vol. 29, (1978), pp. 443–462. | Zbl 0394.10020

[4] D.R. Heath-Brown: “The distribution of moments in the Dirichlet divisor problems”, Acta Arith., Vol. 60, (1992), pp. 389–415. | Zbl 0725.11045

[5] M.N. Huxley: Area, Lattice Points and Exponential Sums, Oxford Science Publications, Clarendon Press, Oxford, 1996.

[6] A. Ivić: “Large values of the error term in the divisor problem”, Invent. Math., Vol. 71, (1983), pp. 513–520. http://dx.doi.org/10.1007/BF02095990 | Zbl 0489.10045

[7] A. Ivić: The Riemann zeta-function, John Wiley & Sons, New York, 1985.

[8] A. Ivić: The mean values of the Riemann zeta-function, LNs 82, Tata Inst. of Fundamental Research, Bombay (distr. by Springer Verlag, Berlin etc.), 1991.

[9] A. Ivić: “Power moments of the Riemann zeta-function over short intervals”. Arch. Mat., Vol. 62, (1994), pp. 418–424. http://dx.doi.org/10.1007/BF01196431 | Zbl 0793.11022

[10] A. Ivić: On some problems involving the mean square of |ξ(1/2+it)|. Bull. CXVI Acad. Serbe, Classe des Sciences mathématique, Vol. 23, (1998), pp. 71–76.

[11] A. Ivić: “Sums of squares of |ξ(1/2+it)| over short intervals”, Max-Planck-Institut für Mathematik, Preprint Series, Vol. 52, (2002), pp. 12.

[12] A. Ivić and P. Sargos: On the higher moments of the error term in the divisor problem, to appear.

[13] M. Jutila: “Riemann’s zeta-function and the divisor problem”, Arkiv Mat., Vol. 21, (1983), pp. 75–96; ibid. Vol. 31, (1993), pp. 61–70. http://dx.doi.org/10.1007/BF02384301 | Zbl 0513.10040

[14] M. Jutila: “On a formula of Atkinson”, In: Proc. Coll. Soc. J. Bolyai-Budapest’81, Vol. 34, North-Holland, Amsterdam, 1984, pp. 807–823.

[15] K. Matsumoto: “Recent developments in the mean square theory of the Riemann zeta and other zeta-functions”, In: Number Theory, Birkhäuser, Basel, 2000, pp. 241–286. | Zbl 0959.11036

[16] T. Meurman: “A generalization of Atkinson’s formula to L-functions”, Acta Arith., Vol. 47, (1986), pp. 351–370. | Zbl 0561.10019

[17] O. Robert and P. Sargos: “Three-dimensional exponential sums with monomials”, J. reine angew. Math. (in print). | Zbl 1165.11067

[18] E.C. Titchmarsh: The theory of the Riemann zeta-function, 2nd Ed., University Press, Oxford, 1986.

[19] K.-M. Tsang: “Higher power moments of Δ(x), E(t) and P(x)”, Proc. London Math. Soc. (3), Vol. 65, (1992), pp. 65–84. | Zbl 0725.11046