Let Δ(x) denote the error term in the Dirichlet divisor problem, and E(T) the error term in the asymptotic formula for the mean square of . If with , then we obtain . We also show how our method of proof yields the bound , where T 1/5+ε≤G≪T, T
@article{bwmeta1.element.doi-10_2478_BF02475958, author = {Aleksandar Ivi\'c}, title = {On the riemann zeta-function and the divisor problem}, journal = {Open Mathematics}, volume = {2}, year = {2004}, pages = {494-508}, zbl = {1116.11067}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02475958} }
Aleksandar Ivić. On the riemann zeta-function and the divisor problem. Open Mathematics, Tome 2 (2004) pp. 494-508. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02475958/
[1] F.V. Atkinson: “The mean value of the zeta-function on the critical line”, Quant. J. Math. Oxford, Vol. 10, (1939), pp. 122–128. | Zbl 0022.02002
[2] F.V. Atkinson: “The mean value of the Riemann zeta-function”, Acta Math., Vol. 81, (1949), pp. 353–376. http://dx.doi.org/10.1007/BF02395027 | Zbl 0036.18603
[3] D.R. Heath-Brown: “The twelfth power moment of the Riemann zeta-function”, Quart. J. Math. (Oxford), Vol. 29, (1978), pp. 443–462. | Zbl 0394.10020
[4] D.R. Heath-Brown: “The distribution of moments in the Dirichlet divisor problems”, Acta Arith., Vol. 60, (1992), pp. 389–415. | Zbl 0725.11045
[5] M.N. Huxley: Area, Lattice Points and Exponential Sums, Oxford Science Publications, Clarendon Press, Oxford, 1996.
[6] A. Ivić: “Large values of the error term in the divisor problem”, Invent. Math., Vol. 71, (1983), pp. 513–520. http://dx.doi.org/10.1007/BF02095990 | Zbl 0489.10045
[7] A. Ivić: The Riemann zeta-function, John Wiley & Sons, New York, 1985.
[8] A. Ivić: The mean values of the Riemann zeta-function, LNs 82, Tata Inst. of Fundamental Research, Bombay (distr. by Springer Verlag, Berlin etc.), 1991.
[9] A. Ivić: “Power moments of the Riemann zeta-function over short intervals”. Arch. Mat., Vol. 62, (1994), pp. 418–424. http://dx.doi.org/10.1007/BF01196431 | Zbl 0793.11022
[10] A. Ivić: On some problems involving the mean square of |ξ(1/2+it)|. Bull. CXVI Acad. Serbe, Classe des Sciences mathématique, Vol. 23, (1998), pp. 71–76.
[11] A. Ivić: “Sums of squares of |ξ(1/2+it)| over short intervals”, Max-Planck-Institut für Mathematik, Preprint Series, Vol. 52, (2002), pp. 12.
[12] A. Ivić and P. Sargos: On the higher moments of the error term in the divisor problem, to appear.
[13] M. Jutila: “Riemann’s zeta-function and the divisor problem”, Arkiv Mat., Vol. 21, (1983), pp. 75–96; ibid. Vol. 31, (1993), pp. 61–70. http://dx.doi.org/10.1007/BF02384301 | Zbl 0513.10040
[14] M. Jutila: “On a formula of Atkinson”, In: Proc. Coll. Soc. J. Bolyai-Budapest’81, Vol. 34, North-Holland, Amsterdam, 1984, pp. 807–823.
[15] K. Matsumoto: “Recent developments in the mean square theory of the Riemann zeta and other zeta-functions”, In: Number Theory, Birkhäuser, Basel, 2000, pp. 241–286. | Zbl 0959.11036
[16] T. Meurman: “A generalization of Atkinson’s formula to L-functions”, Acta Arith., Vol. 47, (1986), pp. 351–370. | Zbl 0561.10019
[17] O. Robert and P. Sargos: “Three-dimensional exponential sums with monomials”, J. reine angew. Math. (in print). | Zbl 1165.11067
[18] E.C. Titchmarsh: The theory of the Riemann zeta-function, 2nd Ed., University Press, Oxford, 1986.
[19] K.-M. Tsang: “Higher power moments of Δ(x), E(t) and P(x)”, Proc. London Math. Soc. (3), Vol. 65, (1992), pp. 65–84. | Zbl 0725.11046