Oscillation results for second order nonlinear differential equations
Jozef Džurina ; Dáša Lacková
Open Mathematics, Tome 2 (2004), p. 57-66 / Harvested from The Polish Digital Mathematics Library

In this paper, the authors present some new results for the oscillation of the second order nonlinear neutral differential equations of the form rtψxtxt+ptxτt''+qtfxσt=0 . Easily verifiable criteria are obtained that are also new for differential equations without neutral term i.e. for p(t)≡0.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:268725
@article{bwmeta1.element.doi-10_2478_BF02475950,
     author = {Jozef D\v zurina and D\'a\v sa Lackov\'a},
     title = {Oscillation results for second order nonlinear differential equations},
     journal = {Open Mathematics},
     volume = {2},
     year = {2004},
     pages = {57-66},
     zbl = {1046.34058},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02475950}
}
Jozef Džurina; Dáša Lacková. Oscillation results for second order nonlinear differential equations. Open Mathematics, Tome 2 (2004) pp. 57-66. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02475950/

[1] D.D. Bainov and D.P. Mishev: Oscillation Theory for Neutral Differential Equations with Delay, Adam Hilger, Bristol, Philadelphia, New York, 1991.

[2] M. Budincevic: “Oscillation of second order neutral nonlinear differential equations”, Novi Sad J. Math., Vol. 27, (1997), pp. 49–56. | Zbl 1074.34500

[3] T.A. Chanturija and I.T. Kiguradze: Asymptotic properties of solutions of nonautonomous ordinary differential equations. Nauka, Moscow, 1991. (Russian)

[4] L.H. Erbe, Q. Kong, B.G. Zhang: Oscillation Theory for Functional Differential Equations, Adam Hilger, New York, Basel, Hong Kong, 1991.

[5] L.H. Erbe and Q. Kong: “Oscillation résults for second order neutral differential equations”, Funk. Ekvacioj, Vol. 35, (1992), pp. 545–557. | Zbl 0787.34057

[6] Q. Chuanxi and G. Ladas: “Oscillations of higher order neutral differential equations with variable coefficients”, Math. Nachr., Vol. 150, (1991), pp. 15–24. | Zbl 0728.34075

[7] S.R. Grace and B.S. Lalli: “Oscillation and asymptotic behavior of certain second order neutral differential equations”, Radovi Mat., Vol. 5, (1989), pp. 121–126. | Zbl 0677.34058

[8] M.K. Grammatikopoulos, G. Ladas and A. Meimaridou: “Oscillation and asymptotic behavior of higher order neutral equations with variable coefficients”, Chin. Ann. of Math., Vol. 9B, (1988), pp. 322–338. | Zbl 0672.34066

[9] K. Gopalsamy, B.S. Lalli and B.G. Zhang: “Oscillation of odd order neutral differential equations”, Czech. Math. J., Vol. 42, (1992), pp. 313–323. | Zbl 0778.34050

[10] I. Győri and G. Ladas: Theory of Delay Differential Equations with Applications, Clarendon Press, Oxford, (1991). | Zbl 0780.34048

[11] J. Hale: Theory of functional differential equations, Springer-Verlag, New York, 1977. | Zbl 0352.34001

[12] N. Parhi and P.K. Mohanty: “Oscillation of neutral differential equations of higher order”, Bull. Inst. Math. Sinica, Vol. 24, (1996), pp. 139–150. | Zbl 0858.34059

[13] M. Ružičková and E. Špániková: “Comparison theorems for differential equations of neutral type”, Fasc. Math., Vol. 128, (1998), pp. 141–148. | Zbl 0915.34068

[14] P. Wang, Y. Yu: “Oscillation of second order order neutral equations with deviating argument”, Math. J. Toyama Univ., Vol. 21, (1998), pp. 55–66. | Zbl 0983.34058