The main aim of the paper is to classify the discrete derived categories of bounded complexes of modules over finite dimensional algebras.
@article{bwmeta1.element.doi-10_2478_BF02475948, author = {Grzegorz Bobi\'nski and Christof Gei\ss\ and Andrzej Skowro\'nski}, title = {Classification of discrete derived categories}, journal = {Open Mathematics}, volume = {2}, year = {2004}, pages = {19-49}, zbl = {1036.18007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02475948} }
Grzegorz Bobiński; Christof Geiß; Andrzej Skowroński. Classification of discrete derived categories. Open Mathematics, Tome 2 (2004) pp. 19-49. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02475948/
[1] I. Assem and D. Happel: “Generalized tilted algebras of type ”, Comm. Algebra, Vol. 9, (1981), pp. 2101–2125. | Zbl 0481.16009
[2] I. Assem and A. Skowroński: “Iterated tilted algebras of type ”, Math. Z., Vol. 195, (1987), pp. 269–290. http://dx.doi.org/10.1007/BF01166463 | Zbl 0601.16022
[3] I. Assem and A. Skowroński: “Algebras with cycle-finite derived categories”, Math. Ann., Vol. 280, (1988), pp. 441–463. http://dx.doi.org/10.1007/BF01456336 | Zbl 0617.16017
[4] M. Auslander, M. Platzeck and I. Reiten: “Coxeter functors without diagrams”, Trans. Amer. Math. Soc., Vol. 250, (1979), pp. 1–46. http://dx.doi.org/10.2307/1998978
[5] M. Barot and J. A. de la Peña: “The Dynkin type of non-negative unit form”, Expo. Math., Vol. 17, (1999), pp. 339–348. | Zbl 1073.15531
[6] K. Bongartz: “Tilted Algebras”, Lecture Notes in Math., Vol. 903, (1981), pp. 26–38.
[7] K. Bongartz and P. Gabriel: “Covering spaces in representation theory”, Invent. Math., Vol. 65, (1981), pp. 331–378. http://dx.doi.org/10.1007/BF01396624 | Zbl 0482.16026
[8] M. C. R. Butler and C. M. Ringel: “Auslander-Reiten sequences with few middle terms and applications to string algebras”, Comm. Algebra, Vol. 15, (1987), pp. 145–179. | Zbl 0612.16013
[9] Ch. Geiß and J. A. de la Peña: “Auslander-Reiten components for clans”, Bol. Soc. Mat. Mexicana, Vol. 5, (1999), pp. 307–326. | Zbl 0959.16013
[10] D. Happel: Triangulated categories in the representation theory of finite-dimensional algebras, London Math. Soc. Lecture Note Series, 1988. | Zbl 0635.16017
[11] D. Happel: “Auslander-Reiten triangles in derived categories of finite-dimensional algebras”, Proc. Amer. Math. Soc., Vol. 112, (1991), pp. 641–648. http://dx.doi.org/10.2307/2048684 | Zbl 0736.16005
[12] D. Happel and C. M. Ringel: “Tilted algebras”, Trans. Amer. Math. Soc., Vol. 274, (1982), pp. 399–443. http://dx.doi.org/10.2307/1999116 | Zbl 0503.16024
[13] D. Hughes and J. Waschbüsch: “Trivial extensions of tilted algebras”, Proc. London Math. Soc., Vol. 46, (1983), pp. 347–364. | Zbl 0488.16021
[14] B. Keller and D. Vossieck: “Aisles in derived, categories”, Bull. Soc. Math. Belg., Vol. 40, (1988), pp. 239–253. | Zbl 0671.18003
[15] J. Nehring: “Polynomial growth trivial extensions of non-simply connected algebras”, Bull. Polish Acad. Sci. Math., Vol. 36, (1988), pp. 441–445. | Zbl 0777.16008
[16] J. Rickard: “Morita theory for derived categories”, J. London Math. Soc., Vol. 39, (1989), pp. 436–456. | Zbl 0642.16034
[17] C. M. Ringel: Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math., 1984.
[18] C. M. Ringel: “The repetitive algebra of a gentle algebra”, Bol. Soc. Mat. Mexicana, Vol. 3, (1997), pp. 235–253. | Zbl 0906.16005
[19] A. Skowroński and J. Waschbüsch: “Representation-finite biserial algebras”, J. Reine Angew. Math., Vol. 345, (1983), pp. 172–181. | Zbl 0511.16021
[20] J. L. Verdier: “Categories derivées, état 0”, Lecture Notes in Math., Vol. 569, (1977), pp. 262–331.
[21] D. Vossieck: “The algebras with discrete derived category”, J. Algebra, Vol. 243, (2001), pp. 168–176. http://dx.doi.org/10.1006/jabr.2001.8783
[22] H. Tachikawa and T. Wakamatsu: “Applications of reflection functors for selfinjective algebras”, Lecture Notes in Math., Vol. 1177, (1986), pp. 308–327. http://dx.doi.org/10.1007/BFb0075271 | Zbl 0626.16016