We consider a continuous curve of linear elliptic formally self-adjoint differential operators of first order with smooth coefficients over a compact Riemannian manifold with boundary together with a continuous curve of global elliptic boundary value problems. We express the spectral flow of the resulting continuous family of (unbounded) self-adjoint Fredholm operators in terms of the Maslov index of two related curves of Lagrangian spaces. One curve is given by the varying domains, the other by the Cauchy data spaces. We provide rigorous definitions of the underlying concepts of spectral theory and symplectic analysis and give a full (and surprisingly short) proof of our General Spectral Flow Formula for the case of fixed maximal domain. As a side result, we establish local stability of weak inner unique continuation property (UCP) and explain its role for parameter dependent spectral theory.
@article{bwmeta1.element.doi-10_2478_BF02475923, author = {Bernhelm Booss-Bavnbek and Chaofeng Zhu}, title = {General spectral flow formula for fixed maximal domain}, journal = {Open Mathematics}, volume = {3}, year = {2005}, pages = {558-577}, zbl = {1108.58022}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02475923} }
Bernhelm Booss-Bavnbek; Chaofeng Zhu. General spectral flow formula for fixed maximal domain. Open Mathematics, Tome 3 (2005) pp. 558-577. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02475923/
[1] W. Ambrose: “The index theorem in Riemannian geometry”, Ann. of Math., Vol. 73, (1961), pp. 49–86. http://dx.doi.org/10.2307/1970282 | Zbl 0104.16401
[2] V.I. Arnol'd: “Characteristic class entering in quantization conditions”, Funkcional. Anal. i Priložen., Vol. 1, (1967), pp. 1–14 (in russian); Functional Anal. Appl., Vol. 1, (1967), pp. 1–13 (in english); Théorie des perturbations et méthodes asymptotiques, Dunod, Gauthier-Villars, Paris, 1972, pp. 341–361 (in french). http://dx.doi.org/10.1007/BF01075861 | Zbl 0175.20303
[3] M.F. Atiyah, V.K. Patodi and I.M. Singer: “Spectral asymmetry and Riemannian geometry, I”, Math. Proc. Cambridge Phil. Soc., Vol. 77, (1975), pp. 43–69. http://dx.doi.org/10.1017/S0305004100049410 | Zbl 0297.58008
[4] B. Bojarski: “The abstract linear conjugation problem and Fredholm pairs of subspaces” In: In Memoriam I.N. Vekua, Tbilisi Univ., Tbilisi, 1979, pp. 45–60 (in russian).
[5] B. Booss-Bavnbek and K. Furutani: “The Maslov index-a functional analytical definition and the spectral flow formula”, Tokyo. J. Math., Vol. 21, (1998), pp. 1–34. http://dx.doi.org/10.3836/tjm/1270041982 | Zbl 0932.37063
[6] B. Booss-Bavnbek, K. Furutani and N. Otsuki: “Criss-cross reduction of the Maslov index and a proof of the Yoshida-Nicolaescu Theorem”, Tokyo J. Math., Vol. 24, (2001), pp. 113–128. http://dx.doi.org/10.3836/tjm/1255958316 | Zbl 1038.53072
[7] B. Booss-Bavnbek, M. Lesch and J. Phillips: “Unbounded Fredholm operators and spectral flow”, Canad. J. Math., Vol. 57(2), (2005), pp. 225–250, arXiv: math.FA/0108014. | Zbl 1085.58018
[8] B. Booss-Bavnbek, M. Lesch and C. Zhu: “Elliptic differential operators on compact manifolds with smooth boundary”, in preparation. | Zbl 1257.58017
[9] B. Booss-Bavnbek, M. Marcolli and B.-L. Wang: “Weak UCP and perturbed monopole equations”, Internat. J. Math., Vol. 13(9), (2002), pp. 987–1008. http://dx.doi.org/10.1142/S0129167X02001551 | Zbl 1058.58014
[10] B. Booss-Bavnbek and K.P. Wojciechowski: Elliptic Boundary Problems for Dirac Operators, Birkhäuser, Boston, 1993.
[11] B. Booss-Bavnbek and C. Zhu: Weak Symplectic Functional Analysis and General Spectral Flow Formula, Preprint, Roskilde, December 2003, arXiv: math.DG/0406139. | Zbl 1307.53063
[12] S.E. Cappell, R. Lee and E.Y. Miller: “Selfadjoint elliptic operators and manifold decompositions Part II: Spectral flow and Maslov index”, Comm. Pure Appl. Math., Vol. 49, (1996), pp. 869–909. http://dx.doi.org/10.1002/(SICI)1097-0312(199609)49:9<869::AID-CPA1>3.0.CO;2-5
[13] A. Carey and J. Phillips: Spectral Flow in Fredholm Modules, Eta Invariants and the JLO Cocycle, Preprint 2003, arXiv: math.KT/0308161. | Zbl 1051.19004
[14] J.J. Duistermaat: “On the Morse index in variational calculus”, Adv. Math., Vol. 21, (1976), pp. 173–195. http://dx.doi.org/10.1016/0001-8708(76)90074-8 | Zbl 0361.49026
[15] A. Floer: “A relative Morse index for the symplectic action”, Comm. Pure Appl. Math., Vol. 41, (1988), pp. 393–407. | Zbl 0633.58009
[16] B. Himpel, P. Kirk and M. Lesch: “Calderón projector for the Hessian of the Chern-Simons function on a 3-manifold with boundary”, Proc. London. Math. Soc., Vol. 89, (2004), pp. 241–272, arXiv: math.GT/0302234. http://dx.doi.org/10.1112/S0024611504014728 | Zbl 1082.58023
[17] T. Kato: Perturbation Theory for Linear Operators, 2nd ed., Springer-Verlag, Berlin, 1966; 1976 corrected printing; 1980. | Zbl 0148.12601
[18] P. Kirk and M. Lesch: “The η-invariant, Maslov index, and spectral flow for Diractype operators on manifolds with boundary”, Forum Math., Vol. 16(4), (2004), pp. 553–629, arXiv: math.DG/0012123. http://dx.doi.org/10.1515/form.2004.027
[19] B. Lawruk, J. Śniatycki and W.M. Tulczyjew: “Special symplectic spaces”, J. Differential Equations, Vol. 17, (1975), pp. 477–497. http://dx.doi.org/10.1016/0022-0396(75)90057-1 | Zbl 0324.58018
[20] Y. Long and C. Zhu: “Maslov-type index theory for symplectic paths and spectral flow (II)”, Chinese Ann. of Math. B, Vol. 21(1), (2000), pp. 89–108. http://dx.doi.org/10.1142/S0252959900000133 | Zbl 0959.58017
[21] M. Morse: The Calculus of Variations in the Large, Vol. 18, A.M.S. Coll. Publ., Amer. Math. Soc., New York, 1934.
[22] L. Nicolaescu: “The Maslov index, the spectral flow, and decomposition of manifolds”, Duke Math. J., Vol. 80, (1995), pp. 485–533. http://dx.doi.org/10.1215/S0012-7094-95-08018-1 | Zbl 0849.58064
[23] J. Phillips: “Self-adjoint Fredholm operators and spectral flow”, Canad. Math. Bull., Vol. 39, (1996), pp. 460–467. | Zbl 0878.19001
[24] P. Piccione and D.V. Tausk: “The Maslov index and a generalized Morse index theorem for non-positive definite metrics”, C. R. Acad. Sci. Paris Sér. I. Math., Vol. 331, (2000), pp. 385–389. | Zbl 0980.53095
[25] “The Morse index theorem in semi-Riemannian Geometry”, Topology, Vol. 41, (2002), pp. 1123–1159, arXiv: math.DG/0011090. | Zbl 1040.53052
[26] A. Pliś: “A smooth linear elliptic differential equation without any solution in a sphere”, Comm. Pure Appl. Math., Vol. 14, (1961), pp. 599–617. | Zbl 0163.13103
[27] J.V. Ralston: “Deficiency indices of symmetric operators with elliptic boundary conditions”, Comm. Pure Appl. Math., Vol. 23, (1970), pp. 221–232. | Zbl 0188.40904
[28] J. Robbin and D. Salamon: “The Maslov index for paths”, Topology, Vol. 32, (1993), pp. 823–844. http://dx.doi.org/10.1016/0040-9383(93)90052-W | Zbl 0798.58018
[29] R.T. Seeley: “Singular integrals and boundary value problems”, Amer. J. Math., Vol. 88, (1966), pp. 781–809. http://dx.doi.org/10.2307/2373078 | Zbl 0178.17601
[30] K.P. Wojciechowski: “Spectral flow and the general linear conjugation problem”, Simon Stevin, Vol. 59, (1985), pp. 59–91. | Zbl 0577.58029
[31] Tomoyoshi Yoshida: “Floer homology and splittings of manifolds”, Ann. of Math., Vol. 134, (1991), pp. 277–323. http://dx.doi.org/10.2307/2944348 | Zbl 0748.57002
[32] C. Zhu: Maslov-type index theory and closed characteristics on compact convex hypersurfaces in ℝ2n , Thesis (PhD), Nankai Institute, Tianjin, 2000 (in Chinese).
[33] C. Zhu: The Morse Index Theorem for Regular Lagrangian Systems, Preprint September 2001 (arXiv: math.DG/0109117) (first version); MPI Preprint 2003, no. 55 (modified version).
[34] C. Zhu and Y. Long: “Maslov-type index theory for symplectic paths and spectral flow. (I)”, Chinese Ann. of Math. B, Vol. 20, (1999), pp. 413–424. http://dx.doi.org/10.1142/S0252959999000485 | Zbl 0959.58016