On the first homology of automorphism groups of manifolds with geometric structures
Kōjun Abe ; Kazuhiko Fukui
Open Mathematics, Tome 3 (2005), p. 516-528 / Harvested from The Polish Digital Mathematics Library

Hermann and Thurston proved that the group of diffeomorphisms with compact support of a smooth manifold M which are isotopic to the identity is a perfect group. We consider the case where M has a geometric structure. In this paper we shall survey on the recent results of the first homology of the diffeomorphism groups which preserve a smooth G-action or a foliated structure on M. We also work in Lipschitz category.

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:268694
@article{bwmeta1.element.doi-10_2478_BF02475921,
     author = {K\=ojun Abe and Kazuhiko Fukui},
     title = {On the first homology of automorphism groups of manifolds with geometric structures},
     journal = {Open Mathematics},
     volume = {3},
     year = {2005},
     pages = {516-528},
     zbl = {1117.57032},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02475921}
}
Kōjun Abe; Kazuhiko Fukui. On the first homology of automorphism groups of manifolds with geometric structures. Open Mathematics, Tome 3 (2005) pp. 516-528. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02475921/

[1] K. Abe and K. Fukui: “On commutators of equivariant diffeomorphisms”, Proc. Japan Acad., Vol. 54, (1978), pp. 52–54. http://dx.doi.org/10.3792/pjaa.54.52 | Zbl 0398.57032

[2] K. Abe and K. Fukui: “On the structure of the group of equivariant diffeomorphisms of G-manifolds with codimension one orbit”, Topology, Vol. 40, (2001), pp. 1325–1337. http://dx.doi.org/10.1016/S0040-9383(00)00014-8 | Zbl 1001.58003

[3] K. Abe and K. Fukui: “On the structure of the group of Lipschitz homeomorphisms and its subgroups”, J. Math. Soc. Japan, Vol. 53(3), (2001), pp. 501–511. | Zbl 0997.58003

[4] K. Abe and K. Fukui: “On the structure of the group of Lipschitz homeomorphisms and its subgroups II”, J. Math. Soc. Japan, Vol. 55(4), (2003), pp. 947–956. | Zbl 1043.58003

[5] K. Abe and K. Fukui: “On the first homology of the group of equivariant diffeomorphisms and its applications”, preprint. | Zbl 1145.58005

[6] K. Abe and K. Fukui: “On the structure of the group of diffeomorphisms of manifolds with boundary and its applications”, preprint. | Zbl 1001.58003

[7] K. Abe, K. Fukui and T. Miura: “On the first homology of the group of equivariant Lipschitz homeomorphisms”, preprint. | Zbl 1101.58008

[8] A. Banyaga: “On the structure of the group of equivariant diffeomorphisms”, Topology, Vol. 16, (1977), pp. 279–283. http://dx.doi.org/10.1016/0040-9383(77)90009-X

[9] A. Banyaga; The structure of classical diffeomorphism groups, Mathematics and its Applications, Vol. 400, Kluwer Academic Publishers, Dordrecht, 1997. | Zbl 0874.58005

[10] E. Bierstone: “The Structure of Orbit Spaces and the Singularities of Equivariant Mappings”, Instituto de Mathematica Pura e Aplicada, Rio de Janeiro, 1980. | Zbl 0501.57001

[11] B. Bredon: Introduction to Compact Transformation Groups, Academic Press, New York-London, 1972.

[12] D.B.A. Epstein: “The simplicity of certain groups of homeomorphisms”, Compocio Math., Vol. 22, (1970), pp. 165–173. | Zbl 0205.28201

[13] D.B.A. Epstein: “Foliations with all leaves compact”, Ann. Inst. Fourier, Grenoble, Vol. 26, (1976), pp. 265–282. | Zbl 0313.57017

[14] D.B.A. Epstein: “Commutators of C ∞-diffeomorphisms”, Appendix to: John N. Mather: “gA curious remark concerning the geometric transfer map”, Comment. Math. Helv., Vol. 59, (1984), pp. 111–122. | Zbl 0535.58007

[15] K. Fukui: “Homologies of Dif f ∞(R n , 0) ant its subgroups”, J. Math. Kyoto Univ., Vol. 20, (1980), pp. 457–487.

[16] K. Fukui: “Commutators of foliation preserving homeomorphisms for certain compact foliations”, Publ. RIMS Kyoto Univ., Vol. 34(1), (1998), pp. 65–73. http://dx.doi.org/10.2977/prims/1195144828 | Zbl 0965.57032

[17] K. Fukui and H. Imanishi: “On commutators of foliation preserving homeomorphisms”, J. Math. Soc. Japan, Vol. 51(1), (1999), pp. 227–236. | Zbl 0928.57034

[18] K. Fukui and H. Imanishi: “On commutators of foliation preserving Lipschitz homeomorphisms“; J. Math. Kyoto Univ., Vol. 41 (3), (2001), pp. 507–515. | Zbl 1012.58005

[19] K. Fukui and T. Nakamura: “A topological property of Lipschitz mappings”, Topol. Appl., Vol. 148, (2005), pp. 143–152. http://dx.doi.org/10.1016/j.topol.2004.08.005 | Zbl 1063.58006

[20] K. Fukui and S. Ushiki: “On the homotopy type of F Dif f(S 3, F R )”, J. Math. Kyoto Univ., Vol. 15(1), (1975), pp. 201–210. | Zbl 0302.57008

[21] M. Hermann: “Simplicité du groupe des difféomorphismes de class C ∞, isotopes á l'identité, du tore de dimension n” C. R. Acad. Sci. Pari Sér. A-B, Vol. 273, (1971), pp. 232–234. | Zbl 0217.49602

[22] M. Hermann: “Sur la conjugasion différentiable des difféomorphismes du cercle á des rotations”, Publ. I.H.E.S., Vol. 49, (1979), pp. 5–233.

[23] F. Hirzebruch and K.H. Mayer: O(n)-Manigfaltigkeiten, exotische Sphären und Singularitäten, Springer Lecture Notes, Vol. 57, 1968. | Zbl 0172.25304

[24] H. Imanishi: “On the theorem of Denjoy-Sacksteder for codimension one foliations without holonomy”, J. Math. Kyoto Univ., Vol. 14, (1974), pp. 607–634. | Zbl 0296.57006

[25] J. Luukkainen and J. Väisälä: “Elements of Lipschitz topology”, Ann. Acad. Sci. Fennicae, Ser. A.I. Math., Vol. 3, (1977), pp. 85–122. | Zbl 0397.57011

[26] J.N. Mather: “Commutators of diffeomorphisms I and II”, Comment. Math. Helv., Vol. 49, (1992), pp. 512–528; Vol. 50, (1975), pp. 33–40. | Zbl 0289.57014

[27] T. Rybicki: “The identity component of the leaf preserving diffeomorphism group is perfect”, Monatsh. Math., Vol. 120, (1995), pp. 289–305. http://dx.doi.org/10.1007/BF01294862 | Zbl 0847.57033

[28] T. Rybicki: “Commutators of diffeomorphisms of a manifold with boundary”, Ann. Polon. Math., Vol. 68(3), (1998), pp. 199–210. | Zbl 0907.57022

[29] G.W. Schwarz: “Smooth invariant functions under the action of a compact Lie group”, Topology, Vol. 14, (1975), pp. 63–68. http://dx.doi.org/10.1016/0040-9383(75)90036-1

[30] G.W. Schwarz: “Lifting smooth homotopies of orbit spaces”, Inst. Hautes Etudes Sci. Publ. Math., Vol. 51, (1980), pp. 37–135. | Zbl 0449.57009

[31] R. Strub: “Local classification of quotients of smooth manifolds by discontinuous groups”, Math. Zeitschrift, Vol. 179, (1982), pp. 43–57. http://dx.doi.org/10.1007/BF01173913 | Zbl 0458.57029

[32] S. Sternberg: “Local contractions and a theorem of Poincaré”, Amer. Jour. of Math., Vol. 79, (1957), pp. 809–823. http://dx.doi.org/10.2307/2372437 | Zbl 0080.29902

[33] S. Sternberg: “The structure of local homeomorphisms, II”, Amer. Jour. of Math., Vol. 80, (1958), pp. 623–632. http://dx.doi.org/10.2307/2372774

[34] W. Thurston: “Foliations and group of diffeomorphisms”, Bull. Amer. Math. Soc., Vol. 80, (1974), pp. 304–307. http://dx.doi.org/10.1090/S0002-9904-1974-13475-0 | Zbl 0295.57014

[35] T. Tsuboi: “On the group of foliation preserving diffeomorphisms”, preprint. | Zbl 1222.57031

[36] J.H.C. Whitehead: “Manifolds with transverse fields in euclidean space”, Ann. of Math., Vol. 73(2), (1961), pp. 154–212. http://dx.doi.org/10.2307/1970286 | Zbl 0096.37802