In this paper, we evaluate various analytic Feynman integrals of first variation, conditional first variation, Fourier-Feynman transform and conditional Fourier-Feynman transform of cylinder type functions defined over Wiener paths in abstract Wiener space. We also derive the analytic Feynman integral of the conditional Fourier-Feynman transform for the product of the cylinder type functions which define the functions in a Banach algebra introduced by Yoo, with n linear factors.
@article{bwmeta1.element.doi-10_2478_BF02475918, author = {Myung Kim}, title = {Analytic Feynman integrals of transforms of variation of cylinder type functions over Wiener paths in abstract Wiener space}, journal = {Open Mathematics}, volume = {3}, year = {2005}, pages = {475-495}, zbl = {1118.28007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02475918} }
Myung Kim. Analytic Feynman integrals of transforms of variation of cylinder type functions over Wiener paths in abstract Wiener space. Open Mathematics, Tome 3 (2005) pp. 475-495. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02475918/
[1] M.D. Brue: A functional transform for Feynman integrals similar to the Fourier transform, Thesis, Univ. of Minnesota, Minneapolis, 1972.
[2] R.H. Cameron: The first variation of an infefineite Wiener integral, Proc. Amer. Math. Soc., Vol. 2, (1951), pp. 914–924. http://dx.doi.org/10.2307/2031708 | Zbl 0044.12103
[3] R.H. Cameron and D.A. Storvick: “An L 2 analytic Fourier-Feynman transform”, Michigan Math. J., Vol. 23, (1976), pp. 1–30. http://dx.doi.org/10.1307/mmj/1029001617 | Zbl 0382.42008
[4] R.H. Cameron and D.A. Storvick: Some Banach algebras of analytic Feynman integrable functionals, An analytic functions, Lecture Notes in Math., Vol. 798, Springer, 1980, pp. 18–27. http://dx.doi.org/10.1007/BFb0097256 | Zbl 0439.28007
[5] K.S. Chang, D.H. Cho, B.S. Kim, T.S. Song and I. Yoo: “Conditional Fourier-Feynman transform and convolution product over Wiener paths in abstract Wiener space”, Integral Transform. Spec. Funct., Vol. 14(3), (2003), pp. 217–235. http://dx.doi.org/10.1080/1065246031000081652 | Zbl 1031.28008
[6] K.S. Chang, D.H. Cho and I. Yoo: “A conditional analytic Feynman integral over Wiener paths in abstract Wiener space”, Intern. Math. J., Vol. 2(9), (2002), pp. 855–870. | Zbl 1275.28015
[7] K.S. Chang, D.H. Cho and I. Yoo: “Evaluation formulas for a conditional Feynman integral over Wiener paths in abstract Wiener space”, Czechoslovak Math. J., Vol. 54(129), (2004), pp. 161–180. http://dx.doi.org/10.1023/B:CMAJ.0000027256.06816.1a | Zbl 1047.28008
[8] K.S. Chang, T.S. Song and I. Yoo: “Analytic Fourier-Feynman transform and first variation on abstract Wiener space”, J. Korean Math. Soc., Vol. 38(2), (2001), pp. 485–501. | Zbl 1033.28007
[9] D.H. Cho: “Conditional Fourier-Feynman transform and convolution product over Wiener paths in abstract Wiener space: an L p theory”, J. Korean Math. Soc., Vol. 42(2), (2004), pp. 265–294. | Zbl 1040.28019
[10] D.H. Cho: “Conditional first variation over Wiener paths in abstract Wiener space”, J. Korean Math. Soc., (2004), to appear. | Zbl 1076.28013
[11] D.H. Cho: “Fourier-Feynman transform and first variation of cylinder type functions over Wiener paths in abstract Wiener space”, Intern. Math. J., (2004), submitted.
[12] D.H. Cho: “Conditional Fourier-Feynman transforms of variations over Wiener paths in abstract Wiener space”, J. Korean Math. Soc., (2005), to apear.
[13] G.W. Johnson and D.L. Skoug: “An L p analytic Fourier-Feynman transform”, Michigan Math. J., Vol. 26, (1979), pp. 103–127. http://dx.doi.org/10.1307/mmj/1029002166 | Zbl 0409.28007
[14] G. Kallianpur and C. Bromley: “Generalized Feynman integrals using an analytic continuation in several complex variables”, In Stochastic analysis and applications, Adv. Probab.Related Topics, Vol. 7, Dekker, New York, 1984, pp. 217–267. | Zbl 0554.60061
[15] H.H. Kuo: Gaussian measures in Banach spaces, Lecture Notes in Math., Vol. 463, Springer, 1975. | Zbl 0306.28010
[16] C. Park, D.L. Skong and D.A. Storvick: “Fourier-Feynman transforms and the frist variation”, Rend. Circ. Mat. Palermo II, Vol. 47(2), (1998), pp. 277–292. | Zbl 0907.28008
[17] K.S. Ryu: “The Wiener integral over paths in abstract Wiener space”, J. Korean Math. Soc., Vol. 29(2), (1992), pp. 317–331. | Zbl 0768.28005
[18] I. Yoo: “The analytic Feynman integral over paths in abstract Wiener space”, Comm. Korean Math. Soc., Vol. 10(1), (1995), pp. 93–107. | Zbl 0944.28011