We study conditions involving the critical set of a regular polynomial endomorphism f∶ℂ2↦ℂ2 under which all complete external rays from infinity for f have well defined endpoints.
@article{bwmeta1.element.doi-10_2478_BF02475914, author = {Ma\l gorzata Stawiska}, title = {On regular polynomial endomorphisms of $\mathbb{C}$2 without bounded critical orbitswithout bounded critical orbits}, journal = {Open Mathematics}, volume = {3}, year = {2005}, pages = {398-403}, zbl = {1117.32015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02475914} }
Małgorzata Stawiska. On regular polynomial endomorphisms of ℂ2 without bounded critical orbitswithout bounded critical orbits. Open Mathematics, Tome 3 (2005) pp. 398-403. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02475914/
[1] E. Bedford and M. Jonsson: “Dynamics of regular polynomial endomorphisms of ℂk ”, Amer. J. Math., Vol. 122, (2000), pp. 153–212. | Zbl 0941.37027
[2] E. Bedford and M. Jonsson: “Potential theory in complex dynamics: regular polynomial mappings of ℂk ”, In: Complex analysis and geometry (Paris 1997), Progr. Math. Vol. 188, Birkhäuser, Basel, 2000, pp. 203–211. | Zbl 0961.32019
[3] J.-Y. Briend and J. Duval: “Exposants de Liapounoff et distribution des points périodiques d'un endomorphisme de ℂℙk ”, Acta Math., Vol. 182(2), (1999), pp. 143–157. http://dx.doi.org/10.1007/BF02392572
[4] A. Candel: “Uniformization of surface laminations”, Ann. Scient. Éc. Norm. Sup., Seria 4, Vol. 26, (1993), pp. 489–516. | Zbl 0785.57009
[5] A. Douady and J.H. Hubbard: “Étude dynamique des polynomes complexes I”, Publ. Math. Orsay, (1984). | Zbl 0552.30018
[6] J.E. Fornaess and N. Sibony: “Complex dynamics in higher dimension. Notes partially written by Estela A. Gavosto”, In: NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 439, Complex Potential Theory (Montreal, PQ, 1993), Kluwer Acad. Publ., Dordrecht, 1994, pp. 131–186.
[7] J.E. Fornaess and N. Sibony: “Oka's inequality for currents and applications”, Math. Ann., Vol. 301, (1998), pp. 339–419. | Zbl 0832.32010
[8] J.E. Fornaess and N. Sibony: “Dynamics of ℙ2 (Examples)”, In: Laminations and foliations in dynamics, geometry and topology, Contemporary Mathematics 269, AMS, 2001, pp. 47–87.
[9] S. Heinemann: “Julia sets for endomorphisms of ℂn ”, Ergod. Th. & Dynam. Sys., Vol. 16, (1996), pp. 1275–1295.
[10] J.H. Hubbard and P. Papadopol: “Superattractive fixed points in ℂn ”, Indiana Univ. Math. J., Vol. 43(1), (1994), pp. 321–365. http://dx.doi.org/10.1512/iumj.1994.43.43014 | Zbl 0858.32023
[11] S.L. Hruska: “Constructing an expanding metrics for the dynamical systems in one complex variable”, Nonlinearity, Vol. 18(1), (2005), pp. 81–100. http://dx.doi.org/10.1088/0951-7715/18/1/005
[12] M. Klimek: “Metrics associated with extremal plurisubharmonic functions”, Proc. Amer. Math. Soc., Vol. 123(9), (1995), pp. 2763–2770. http://dx.doi.org/10.2307/2160572 | Zbl 0935.32028
[13] S. Lang: Introduction to complex hyperbolic spaces, Springer-Verlag, New York, 1987. | Zbl 0628.32001
[14] S. Łojasiewicz: “Sur les trajectoires du gradient d'une fonction analytique”, Univ. Stud. Bologna, (1983), pp. 115–117. | Zbl 0606.58045
[15] S. Łojasiewicz: Introduction to complex analytic geometry, Translated from the Polish by Maciej Klimek, Birkhäuser Verlag, Basel, 1991. | Zbl 0747.32001
[16] J. Milnor: Dynamics in one complex variable. Introductory lectures, Friedr. Vieweg & Sohn, Braunschweig, 1999. | Zbl 0946.30013
[17] D. Ruelle: “Repellers for real analytic maps”, Ergod. Th. & Dynam. Sys., Vol. 2, (1982), pp. 99–107. http://dx.doi.org/10.1017/S0143385700009603
[18] N. Sibony: “Dynamique des applications rationnelles de ℙk ”, In: Dynamique et géométrie complexes, Panoramas et Syntheses, Vol. 8, SMF, 1999, pp. 97–185.
[19] M. Stawiska: Repellers for regular polynomial endomorphisms of ℂk Thesis (PhD), Northwestern University, 2001.
[20] T. Ueda: “Critical orbits of holomorphic maps on projective spaces”, J. Geom. Anal., Vol. 8(2), (1998), pp. 319–334. | Zbl 0957.32009