On characterization of Poisson and Jacobi structures
Janusz Grabowski ; Paweŀ Urbański
Open Mathematics, Tome 1 (2003), p. 123-140 / Harvested from The Polish Digital Mathematics Library

We characterize Poisson and Jacobi structures by means of complete lifts of the corresponding tensors: the lifts have to be related to canonical structures by morphisms of corresponding vector bundles. Similar results hold for generalized Poisson and Jacobi structures (canonical structures) associated with Lie algebroids and Jacobi algebroids.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:268760
@article{bwmeta1.element.doi-10_2478_BF02475669,
     author = {Janusz Grabowski and Pawel Urbanski},
     title = {On characterization of Poisson and Jacobi structures},
     journal = {Open Mathematics},
     volume = {1},
     year = {2003},
     pages = {123-140},
     zbl = {1028.17015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02475669}
}
Janusz Grabowski; Paweŀ Urbański. On characterization of Poisson and Jacobi structures. Open Mathematics, Tome 1 (2003) pp. 123-140. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02475669/

[1] [Co] T. J. Courant: Tangent Dirac structures, J. Phys. A: Math. Gen., 23 (1990), 5153–5160. http://dx.doi.org/10.1088/0305-4470/23/22/010

[2] [Gr] J. Grabowski: Abstract Jacobi and Poisson structures, J. Geom. Phys., 9 (1992), 45–73. http://dx.doi.org/10.1016/0393-0440(92)90025-V

[3] [GL] F. Guédira, A. Lichnerowicz: Géométrie des algébres de Lie locales de Kirillov, J. Math. pures et appl., 63 (1984), 407–484.

[4] [GM] J. Grabowski and G. Marmo: Jacobi structures revisited, J. Phys. A: Math. Gen., 34 (2001), 10975–10990. http://dx.doi.org/10.1088/0305-4470/34/49/316

[5] [GM1] J. Grabowski and G. Marmo: The graded Jacobi algebras and (co)homology, J. Phys. A: Math. Gen., 36 (2003), 161–181. http://dx.doi.org/10.1088/0305-4470/36/1/311

[6] [GU] J. Grabowski, P. Urbański: Tangent lifts of Poisson and related structures, J. Phys. A: Math. Gen., 28 (1995), 6743–6777. http://dx.doi.org/10.1088/0305-4470/28/23/024 | Zbl 0872.58028

[7] [GUO] J. Grabowski and P. Urbański: Tangent and cotangent lifts and graded Lie algebras associated with Lie algebroids, Ann. Global Anal. Geom. 15 (1997), 447–486. http://dx.doi.org/10.1023/A:1006519730920 | Zbl 0973.58006

[8] [GU1] J. Grabowski and P. Urbański: Lie algebroids and Poisson-Nijenhuis structures, Rep. Math. Phys., 40 (1997), 195–208. http://dx.doi.org/10.1016/S0034-4877(97)85916-2 | Zbl 1005.53061

[9] [GU2] J. Grabowski and P. Urbański: Algebroids-general differential calculi on vector bundles, J. Geom. Phys., 31 (1999), 111–141. http://dx.doi.org/10.1016/S0393-0440(99)00007-8 | Zbl 0954.17014

[10] [IM] D. Iglesias and J.C. Marrero: Some linear Jacobi structures on vector bundles, C.R. Acad. Sci. Paris, 331 Sér. I. (2000), 125–130.

[11] [IM1] D. Iglesias and J.C. Marrero: Generalized Lie bialgebroids and Jacobi structures, J. Geom. Phys., 40 (2001), 176–1999. http://dx.doi.org/10.1016/S0393-0440(01)00032-8

[12] [IY] S. Ishihara and K. Yano: Tangent and Cotangent Bundles, Marcel Dekker, Inc., New York 1973.

[13] [KSB] Y. Kerbrat and Z. Souici-Benhammadi: Variétés de Jacobi et groupoïdes de contact, C. R. Acad. Sci. Paris, Sér. I, 317 (1993), 81–86.

[14] [Ki] A. Kirillov: Local Lie algebras, Russian Math. Surveys, 31 (1976), 55–75. http://dx.doi.org/10.1070/RM1976v031n04ABEH001556

[15] [KS] Y. Kosmann-Schwarzbach: Exact Gerstenhaber algebras and Lie bialgebroids, Acta Appl. Math., 41 (1995), 153–165. http://dx.doi.org/10.1007/BF00996111 | Zbl 0837.17014

[16] [KSM] Y. Kosmann-Schwarzbach and F. Magri: Poisson-Nijenhuis structures, Ann. Inst. Henri Poincaré, A53 (1990), 35–81.

[17] [Li] A. Lichnerowicz: Les variétés de Jacobi et leurs algébres de Lie associées, J. Math. Pures Appl., 57 (1978), 453–488. | Zbl 0407.53025

[18] [Ma] K. Mackenzie: Lie groupoids and Lie algebroids in differential geometry, Cambridge University Press, 1987.

[19] [MX] K. Mackenzie, P. Xu: Lie bialgebroids and Poisson groupoids, Duke Math. J., 73, (1994), 415–452. http://dx.doi.org/10.1215/S0012-7094-94-07318-3 | Zbl 0844.22005

[20] [MX1] K. Mackenzie, P. Xu: Classical lifting processes and multiplicative vector fields, Quarterly J. Math. Oxford, 49 (1998), 59–85. http://dx.doi.org/10.1093/qjmath/49.193.59 | Zbl 0926.58015

[21] [MMP] J. C. Marrero, J. Monterde and E. Padron: Jacobi-Nijenhuis manifolds and compatible Jacobi structures, C. R. Acad. Sci. Paris, 329, Sér. I (1999), 797–802. | Zbl 0949.37056

[22] [Va] I. Vaisman: The BV-algebra of a Jacobi manifold, Ann. Polon. Math., 73 (2000), 275–290. | Zbl 0989.53050

[23] [Wi] E. Witten: Supersymmetry and Morse theory, J. Diff. Geom., 17 (1982), 661–692. | Zbl 0499.53056