On artin algebras with almost all indecomposable modules of projective or injective dimension at most one
Andrzej Skowroński
Open Mathematics, Tome 1 (2003), p. 108-122 / Harvested from The Polish Digital Mathematics Library

Let A be an artin algebra over a commutative artin ring R and ind A the category of indecomposable finitely generated right A-modules. Denote A to be the full subcategory of ind A formed by the modules X whose all predecessors in ind A have projective dimension at most one, and by A the full subcategory of ind A formed by the modules X whose all successors in ind A have injective dimension at most one. Recently, two classes of artin algebras A with AA co-finite in ind A, quasi-tilted algebras and generalized double tilted algebras, have been extensively investigated. The aim of the paper is to show that these two classes of algebras exhaust the class of all artin algebras A for which AA is co-finite in ind A, and derive some consequences.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:268914
@article{bwmeta1.element.doi-10_2478_BF02475668,
     author = {Andrzej Skowro\'nski},
     title = {On artin algebras with almost all indecomposable modules of projective or injective dimension at most one},
     journal = {Open Mathematics},
     volume = {1},
     year = {2003},
     pages = {108-122},
     zbl = {1035.16008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02475668}
}
Andrzej Skowroński. On artin algebras with almost all indecomposable modules of projective or injective dimension at most one. Open Mathematics, Tome 1 (2003) pp. 108-122. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02475668/

[1] M. Auslander, I. Reiten and S.O. Smalø, “Representation Theory of Artin Algebras”, Cambridge Studies in Advanced Mathematics, Vol. 36, Cambridge University Press, 1995. | Zbl 0834.16001

[2] F. U. Coelho and M. A. Lanzilotta, Algebras with small homological dimension, Manuscripta Math. 100 (1999), 1–11. http://dx.doi.org/10.1007/s002290050191 | Zbl 0966.16001

[3] F. U. Coelho and M. A. Lanzilotta, Weakly shod algebras, Preprint, Sao Paulo 2001. | Zbl 1062.16018

[4] F. U. Coelho and A. Skowroński, On Auslander-Reiten components of quasi-tilted algebras, Fund. Math. 143 (1996), 67–82.

[5] D. Happel and I. Reiten, Hereditary categories with tilting object over arbitrary base fields, J. Algebra, in press.

[6] D. Happel and I. Reiten and S. O. Smalø, Tilting in abelian categories and quasi-tilted algebras, Memoirs Amer. Math. Soc., 575 (1996). | Zbl 0849.16011

[7] D. Happel and C. M. Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (1982), 399–443. http://dx.doi.org/10.2307/1999116 | Zbl 0503.16024

[8] O. Kerner, Stable components of tilted algebras, J. Algebra 162 (1991), 37–57. http://dx.doi.org/10.1016/0021-8693(91)90215-T

[9] M. Kleiner, A. Skowroński and D. Zacharia, On endomorphism algebras with small homological dimensions, J. Math. Soc. Japan 54 (2002), 621–648. | Zbl 1035.16007

[10] H. Lenzing and A. Skowroński, Quasi-tilted algebras of canonical type, Colloq. Math. 71 (1996), 161–181. | Zbl 0870.16007

[11] S. Liu, Semi-stable components of an Auslander-Reiten quiver, J. London Math. Soc. 47 (1993), 405–416. | Zbl 0818.16015

[12] L. Peng and J. Xiao, On the number of D Tr-orbits containing directing modules, Proc. Amer. Math. Soc. 118 (1993), 753–756. http://dx.doi.org/10.2307/2160117 | Zbl 0787.16014

[13] I. Reiten and A. Skowroński, Characterizations of algebras with small homological dimensions, Advances Math., in press. | Zbl 1051.16011

[14] I. Reiten and A. Skowroński, Generalized double tilted algebras, J. Math. Soc. Japan, in press. | Zbl 1071.16011

[15] C. M. Ringel, “Tame Algebras and Integral Quadratic Forms”, Lecture Notes in Math., Vol. 1099, Springer, 1984. | Zbl 0546.16013

[16] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra, Logic and Appl. 4 (Gordon and Breach Science Publishers, Amsterdam 1992). | Zbl 0818.16009

[17] A. Skowroński, Generalized standard components without oriented cycles, Osaka J. Math. 30 (1993), 515–527. | Zbl 0818.16017

[18] A. Skowroński, Generalized standard Auslander-Reiten components, J. Math. Soc. Japan 46 (1994), 517–543. http://dx.doi.org/10.2969/jmsj/04630517 | Zbl 0828.16011

[19] A. Skowroński, Regular Auslander-Reiten components containing directing modules, Proc. Amer. Math. Soc. 120 (1994), 19–26. http://dx.doi.org/10.2307/2160162 | Zbl 0831.16014

[20] A. Skowroński, Minimal representation-infinite artin algebras, Math. Proc. Camb. Phil. Soc. 116 (1994), 229–243. http://dx.doi.org/10.1017/S0305004100072546 | Zbl 0822.16010

[21] A. Skowroński, Directing modules and double tilted algebras, Bull. Polish. Acad. Sci., Ser. Math. 50 (2002), 77–87. | Zbl 1012.16015

[22] A. Skowroński, S.O. Smalø and D. Zacharia, On the finiteness of the global dimension of Artin rings, J. Algebra 251 (2002), 475–478. http://dx.doi.org/10.1006/jabr.2001.9130