Existence and nonexistence results for reaction-diffusion equations in product of cones
Abdallah Hamidi ; Gennady Laptev
Open Mathematics, Tome 1 (2003), p. 61-78 / Harvested from The Polish Digital Mathematics Library

Problems of existence and nonexistence of global nontrivial solutions to quasilinear evolution differential inequalities in a product of cones are investigated. The proofs of the nonexistence results are based on the test-function method developed, for the case of the whole space, by Mitidieri, Pohozaev, Tesei and Véron. The existence result is established using the method of supersolutions.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:268834
@article{bwmeta1.element.doi-10_2478_BF02475664,
     author = {Abdallah Hamidi and Gennady Laptev},
     title = {Existence and nonexistence results for reaction-diffusion equations in product of cones},
     journal = {Open Mathematics},
     volume = {1},
     year = {2003},
     pages = {61-78},
     zbl = {1019.35045},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02475664}
}
Abdallah Hamidi; Gennady Laptev. Existence and nonexistence results for reaction-diffusion equations in product of cones. Open Mathematics, Tome 1 (2003) pp. 61-78. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02475664/

[1] C. Bandle, H.A. Levine, On the existence and nonexistence of global solutions of reaction-diffusion equations in sectorial domains, Trans. Amer. Math. Soc., Vol. 316 (1989), 595–622. http://dx.doi.org/10.2307/2001363 | Zbl 0693.35081

[2] C. Bandle, H.A. Levine, Fujita type results for convective-like reaction-diffusion equations in exterior domains, Z. Angew. Math. Phys., Vol 40 (1989), 665–676. http://dx.doi.org/10.1007/BF00945001 | Zbl 0697.76099

[3] C. Bandle, M. Essen, On positive solutions of Emden equations in cone-like domains, Arch. Rational Mech. Anal., Vol. 112 (1990), 319–338. http://dx.doi.org/10.1007/BF02384077 | Zbl 0727.35051

[4] K. Deng, H.A. Levine, The role of critical exponents in blow-up theorems: the sequel, J. Math. Anal. Appl., Vol. 243 (2000), 85–126. http://dx.doi.org/10.1006/jmaa.1999.6663

[5] H. Egnell, Positive solutions of semilinear equations in cones, Trans. Amer. Math. Soc., Vol. 330 (1992), 191–201. http://dx.doi.org/10.2307/2154160 | Zbl 0766.35014

[6] N. Igbida, M. Kirane, Blowup for completely coupled Fujita type reaction-diffusion system, Collocuim Mathematicum, Vol. 92 (2002), 87–96. http://dx.doi.org/10.4064/cm92-1-8 | Zbl 0988.35026

[7] R. Labbas, M. Moussaoui, M. Najmi, Singular behavior of the Dirichlet problem in Hlder spaces of the solutions to the Dirichlet problem in a cone, Rend. Ist. Mat. Univ. Trieste, 30, No. 1–2, (1998), 155–179. | Zbl 0952.35020

[8] G.G. Laptev, The absence of global positive solutions of systems of semilinear elliptic inequalities in cones, Russian Acad. Sci. Izv. Math., Vol. 64 (2000), 108–124. | Zbl 1013.35041

[9] G.G. Laptev, On the absence of solutions to a class of singular semilinear differential inequalities, Proc. Steklov Inst. Math., Vol. 232 (2001), 223–235.

[10] G.G. Laptev, Nonexistence of solutions to semilinear parabolic inequalities in cones, Mat. Sb., Vol. 192 (2001), 51–70.

[11] G.G. Laptev, Some nonexistence results for higher-order evolution inequalities in cone-like domains, Electron. Res. Announc. Amer. Math. Soc., Vol. 7 (2001), 87–93. http://dx.doi.org/10.1090/S1079-6762-01-00098-1 | Zbl 0981.35104

[12] G.G. Laptev, Nonexistence of solutions for parabolic inequalities in unbounded cone-like domains via the test function method, J. Evolution Equations. 2002 (in press) | Zbl 1137.35396

[13] G.G. Laptev, Nonexistence results for higher-order evolution partial differential inequalities, Proc. Amer. Math. Soc. 2002 (in press).

[14] H.A. Levine, The role of critical exponents in blow-up theorems, SIAM Rev., Vol. 32 (1990), 262–288. http://dx.doi.org/10.1137/1032046 | Zbl 0706.35008

[15] H.A. Levine, P. Meier, A blowup result for the critical exponent in cones, Israel J. Math., Vol. 67 (1989), 1–7. | Zbl 0696.35013

[16] H.A. Levine, P. Meier, The value of the critical exponent for reaction-diffusion equations in cones, Arch. Rational Mech. Anal., Vol. 109 (1990), 73–80. http://dx.doi.org/10.1007/BF00377980 | Zbl 0702.35131

[17] E. Mitidieri, S.I. Pohozaev, Nonexistence of global positive solutions to quasilinear elliptic inequalities, Dokl. Russ. Acad. Sci., Vol. 57 (1998), 250–253.

[18] E. Mitidieri, S.I. Pohozaev, Nonexistence of positive solutions for a system of quasilinear elliptic equations and inequalities in ℝn , Dokl. Russ. Acad. Sci., Vol. 59 (1999), 1351–1355.

[19] E. Mitidieri, S.I. Pohozaev, Nonexistence of positive solutions for quasilinear elliptic problems on ℝn , Proc. Steklov Inst. Math0., Vol. 227 (1999), 192–222.

[20] E. Mitidieri, S.I. Pohozaev, Nonexistence of weak solutions for some degenerate elliptic and parabolic problems on ℝn , J. Evolution Equations, Vol. 1 (2001), 189–220. http://dx.doi.org/10.1007/PL00001368 | Zbl 0988.35095

[21] E. Mitidieri, S.I. Pohozaev, Nonexistence of weak solutions for some degenerate and singular hyperbolic problems on ℝn , Proc. Steklov Inst. Math., Vol. 232 (2001), 240–259. | Zbl 1032.35138

[22] E. Mitidieri, S.I. Pohozaev, A priori Estimates and Nonexistence of Solutions to Nonlinear Partial Differential Equations and Inequalities, Moscow, Nauka, 2001. (Proc. Steklov Inst. Math., Vol. 234). | Zbl 1074.35500

[23] S. Ohta, A. Kaneko, Critical exponent of blowup for semilinear heat equation on a product domain, J. Fac. Sci. Univ. Tokyo. Sect. IA. Math., Vol. 40 (1993), 635–650. | Zbl 0799.35126

[24] S.I. Pohozaev, Essential nonlinear capacities induced by differential operators, Dokl. Russ. Acad. Sci., Vol. 357 (1997), 592–594.

[25] S.I. Pohozaev, A. Tesei, Blow-up of nonnegative solutions to quasilinear parabolic inequalities, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., Vol. 11 (2000), 99–109. | Zbl 1007.35003

[26] S.I. Pohozaev, A. Tesei, Critical exponents for the absence of solutions for systems of quasilinear parabolic inequalities, Differ. Uravn., Vol. 37 (2001), 521–528.

[27] S.I. Pohozaev, L. Veron, Blow-up results for nonlinear hyperbolic inequalities, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), Vol. 29 (2000), 393–420. | Zbl 0965.35197

[28] S.I. Pohozaev, L. Veron, Nonexistence results of solutions of semilinear differential inequalities on the Heisenberg group, Manuscripta math., Vol. 102 (2000), 85–99. http://dx.doi.org/10.1007/PL00005851 | Zbl 0964.35046

[29] A.A. Samarskii, V.A. Galaktionov, S.P. Kurdyumov and A.P. Mikhailov, Blow-up in Quasilinear Parabolic Equations, Nauka, Moscow, 1987 (in Russian). English translation: Walter de Gruyter, Berlin/New York, 1995.

[30] D. H. Sattinger, Topics in Stability and Bifurcation Theory, Lect. Notes Math., Vol. 309, Springer, New York, N. Y., 1973. | Zbl 0248.35003

[31] D. H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana U. Mtah. J. 21 (1972), 979–1000. http://dx.doi.org/10.1512/iumj.1972.21.21079 | Zbl 0223.35038

[32] G. N. Watson, A treatise on the Theory of Bessel Functions, Cambridge University Press, London/New York, 1966. | Zbl 0174.36202

[33] Qi Zhang, Blow-up results for nonlinear parabolic equations on manifolds, Duke Math. J., Vol. 97 (1999), 515–539. http://dx.doi.org/10.1215/S0012-7094-99-09719-3 | Zbl 0954.35029

[34] Qi Zhang, The quantizing effect of potentials on the critial number of reaction-diffusion equations, J. Differential Equations, Vol. 170 (2001), 188–214. http://dx.doi.org/10.1006/jdeq.2000.3815 | Zbl 0973.35035

[35] Qi Zhang, Global lower bound for the heat kernel of -Δ+c|x|2 , Proc. Amer. Math. Soc., Vol. 129 (2001), 1105–1112. http://dx.doi.org/10.1090/S0002-9939-00-05757-9 | Zbl 0964.35024