Sufficient conditions which guarantee that certain linear integro-differential equation cannot have a positive solution are established.
@article{bwmeta1.element.doi-10_2478_BF02475658, author = {Rudolf Olach and Helena \v Samajov\'a}, title = {Oscillations of linear integro-differential equations}, journal = {Open Mathematics}, volume = {3}, year = {2005}, pages = {98-104}, zbl = {1072.45007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02475658} }
Rudolf Olach; Helena Šamajová. Oscillations of linear integro-differential equations. Open Mathematics, Tome 3 (2005) pp. 98-104. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02475658/
[1] L. Berezansky, E. Braverman: “On oscillation of equations with distributed delay”, Z. Anal. Anwendungen, Vol. 20, (2001), pp. 489–504. | Zbl 0995.34059
[2] W.K. Ergen: “Kinetics of the circulating fuel nuclear reactor”,Journal of Applied Physics, Vol.25, (1954), pp.702–711. http://dx.doi.org/10.1063/1.1721720 | Zbl 0055.23003
[3] I. Györi, G. Ladas: Oscillation Theory of Delay Differential Equations, Clarendon Press, Oxford, 1991.
[4] G. Ladas, CH.G. Philos, Y.G. Sficas: “Oscillations of integro-differential equations”, Differential and Integral Equations, Vol. 4, (1991), pp. 1113–1120. | Zbl 0742.45003
[5] G.S. Ladde, V. Lakshmikantham, B.G. Zhang: Oscillation Theory of Differential Equations with Deviating Arguments, Marcel Dekker, New York and Basel, 1987. | Zbl 0832.34071
[6] R. Olach: “Observation of a Feedback Mechanism in a Population Model”, Nonlinear Analysis, Vol. 41, (2000), pp. 539–544. http://dx.doi.org/10.1016/S0362-546X(98)00295-8 | Zbl 0952.34054
[7] X.H. Tang: “Oscillation of first order delay differential equations with distributed delay”, J. Math. Anal. Appl., Vol. 289, (2004), pp. 367–378. http://dx.doi.org/10.1016/j.jmaa.2003.08.008 | Zbl 1055.34129