Oscillations of linear integro-differential equations
Rudolf Olach ; Helena Šamajová
Open Mathematics, Tome 3 (2005), p. 98-104 / Harvested from The Polish Digital Mathematics Library

Sufficient conditions which guarantee that certain linear integro-differential equation cannot have a positive solution are established.

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:268891
@article{bwmeta1.element.doi-10_2478_BF02475658,
     author = {Rudolf Olach and Helena \v Samajov\'a},
     title = {Oscillations of linear integro-differential equations},
     journal = {Open Mathematics},
     volume = {3},
     year = {2005},
     pages = {98-104},
     zbl = {1072.45007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02475658}
}
Rudolf Olach; Helena Šamajová. Oscillations of linear integro-differential equations. Open Mathematics, Tome 3 (2005) pp. 98-104. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02475658/

[1] L. Berezansky, E. Braverman: “On oscillation of equations with distributed delay”, Z. Anal. Anwendungen, Vol. 20, (2001), pp. 489–504. | Zbl 0995.34059

[2] W.K. Ergen: “Kinetics of the circulating fuel nuclear reactor”,Journal of Applied Physics, Vol.25, (1954), pp.702–711. http://dx.doi.org/10.1063/1.1721720 | Zbl 0055.23003

[3] I. Györi, G. Ladas: Oscillation Theory of Delay Differential Equations, Clarendon Press, Oxford, 1991.

[4] G. Ladas, CH.G. Philos, Y.G. Sficas: “Oscillations of integro-differential equations”, Differential and Integral Equations, Vol. 4, (1991), pp. 1113–1120. | Zbl 0742.45003

[5] G.S. Ladde, V. Lakshmikantham, B.G. Zhang: Oscillation Theory of Differential Equations with Deviating Arguments, Marcel Dekker, New York and Basel, 1987. | Zbl 0832.34071

[6] R. Olach: “Observation of a Feedback Mechanism in a Population Model”, Nonlinear Analysis, Vol. 41, (2000), pp. 539–544. http://dx.doi.org/10.1016/S0362-546X(98)00295-8 | Zbl 0952.34054

[7] X.H. Tang: “Oscillation of first order delay differential equations with distributed delay”, J. Math. Anal. Appl., Vol. 289, (2004), pp. 367–378. http://dx.doi.org/10.1016/j.jmaa.2003.08.008 | Zbl 1055.34129