Congruences, ideals and annihilators in standard QBCC-algebras
Radomír Halaš ; Luboš Plojhar
Open Mathematics, Tome 3 (2005), p. 83-97 / Harvested from The Polish Digital Mathematics Library

We characterize congruence lattices of standard QBCC-algebras and their connection with the congruence lattices of congruence kernels.

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:268853
@article{bwmeta1.element.doi-10_2478_BF02475657,
     author = {Radom\'\i r Hala\v s and Lubo\v s Plojhar},
     title = {Congruences, ideals and annihilators in standard QBCC-algebras},
     journal = {Open Mathematics},
     volume = {3},
     year = {2005},
     pages = {83-97},
     zbl = {1071.06011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02475657}
}
Radomír Halaš; Luboš Plojhar. Congruences, ideals and annihilators in standard QBCC-algebras. Open Mathematics, Tome 3 (2005) pp. 83-97. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02475657/

[1] W.J. Blok and D.Pigozzi: Algebraizable logics, Memoirs of the American Math. Soc., Vol. 396, Providence, Rhode Island, 1989. | Zbl 0664.03042

[2] W.A. Dudek: “The number of subalgebras of finite BCC-algebras”, Bull. of the Inst. of Math., Academia Sinica, Vol. 20(2), (1992), pp. 129–135. | Zbl 0770.06009

[3] W.A. Dudek: “On subalgebras in Hilbert algebras”, Novi Sad J. Math., Vol. 29(2) (1999), pp. 181–192. | Zbl 1274.06067

[4] W.A. Dudek: “Subalgebras in finite BCC-algebras, Bull. of the Inst. of Math., Academia Sinica, Vol. 28, (2000), pp. 201–206. | Zbl 0978.06014

[5] I. Chajda and R. Halaš: “Pre-logics BCC-algebras”, Math. Slovaca, Vol. 52(2), (2002), pp. 157–175. | Zbl 1007.08003

[6] R. Halas: “BCC-algebras inherited from posets”,Multiple Valued Logic, Vol.8, (2002), pp.223–235. http://dx.doi.org/10.1080/10236620215290 | Zbl 1032.06010

[7] R. Halaš and J. Ort: “Standard QBCC-algebras”, Demonstratio Math., Vol. 36(1), (2003), pp. 1–10. | Zbl 1032.06009

[8] R. Halaš and J. Ort: “QBCC-algebras inherited from qosets”, Math. Slovaca, Vol. 53(4), (2003), pp. 331–340. | Zbl 1072.06018

[9] Y. Imai and K. Iséki: “On axiomatic system of propositional calculi”, XIV. Proc. Japan Acad., Vol. 42, (1966), pp. 19–22. http://dx.doi.org/10.3792/pja/1195522169

[10] Y. Komori: “The class of BCC-algebras is not a variety”, Math. Japon., Vol. 29, (1984), pp. 391–394. | Zbl 0553.03046

[11] A. Wroński: “An algebraic motivation for BCK-algebras”, Math. Japon., Vol. 30, (1985), pp. 183–193. | Zbl 0569.03029

[12] A. Wroński: “BCK-algebras do not form a variety”, Math. Japon., Vol. 28, (1983), pp. 211–213. | Zbl 0518.06014