We extend Bolzano’s intermediate-value theorem to quasi-holomorphic maps of the space of continuous linear functionals from l p into the scalar field, (0< p<1). This space is isomorphic to l ∞.
@article{bwmeta1.element.doi-10_2478_BF02475656, author = {Aboubakr Bayoumi}, title = {Bolzano's intermediate-value theorem for quasi-holomorphic maps}, journal = {Open Mathematics}, volume = {3}, year = {2005}, pages = {76-82}, zbl = {1069.46508}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02475656} }
Aboubakr Bayoumi. Bolzano’s intermediate-value theorem for quasi-holomorphic maps. Open Mathematics, Tome 3 (2005) pp. 76-82. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02475656/
[1] A. Bayoumi: Foundations of complex analysis in non locally convex spaces. Functions theory without convexity conditions, Mathematics studies, Vol. 193, North Holland, 2003. | Zbl 1082.46001
[2] A. Bayoumi: “Mean-Value Theorem for complex locally bounded spaces”, Communication in Applied Nonlinear Analysis, Vol. 4(3), (1997). | Zbl 0910.46032
[3] A. Bayoumi: “Mean-Value Theorem for real locally bounded spaces”, Journal of Natural Geometry, London, Vol. 10, (1996), pp. 157–162. | Zbl 0858.46035
[4] A. Bayoumi: “Fundamental theorem of calculus for locally bounded spaces”, Journal of Natural Geometry, London, Vol. 15(1–2), (1999), pp. 101–106. | Zbl 0933.46037
[5] A. Bayoumi: “Mean-Value Theorem for definite integrals of vector-valued maps of p-Banach spaces”, (2005), to appear. | Zbl 1110.26021
[6] M. Kransnoseliski: Topological method in theory of nonlinear integral equations, Mcmillan, 1964.
[7] S. Rolewicz: Metric linear spaces, Monografie Matematyczne, Instytut Matematyczny Polskiej Akademii Nauk, 1972. | Zbl 0226.46001
[8] J.T. Schwartz: Nonlinear functional analysis, Gordon and Breach, New York, 1969.
[9] M.H. Shih: “An analogy of Bolzano’s theorem for functions of a complex variable”, Amer. Math. Monthly, Vol. 89, (1982), pp. 210–211. http://dx.doi.org/10.2307/2320206 | Zbl 0494.30010
[10] M.H. Shih: “Bolzano’s theorem in several complex variables”, Proc. Amer. Math. Soc., Vol. 79, (1980), pp. 32–34. http://dx.doi.org/10.2307/2042381 | Zbl 0455.32002
[11] D. Smart: Fixed points theorems, Cambridge Tracts in Math., Vol. 66, 1974.
[12] K. Wlodraczyk: “Intermediate value theorem for holomorphic maps in complex Banach spaces”, Math. Proc. Camb. Phil. Sco., (1991), pp. 539–540. | Zbl 0744.46036