Loading [MathJax]/extensions/MathZoom.js
Centers in domains with quadratic growth
Agata Smoktunowicz
Open Mathematics, Tome 3 (2005), p. 644-653 / Harvested from The Polish Digital Mathematics Library

Let F be a field, and let R be a finitely-generated F-algebra, which is a domain with quadratic growth. It is shown that either the center of R is a finitely-generated F-algebra or R satisfies a polynomial identity (is PI) or else R is algebraic over F. Let r ∈ R be not algebraic over F and let C be the centralizer of r. It is shown that either the quotient ring of C is a finitely-generated division algebra of Gelfand-Kirillov dimension 1 or R is PI.

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:268849
@article{bwmeta1.element.doi-10_2478_BF02475624,
     author = {Agata Smoktunowicz},
     title = {Centers in domains with quadratic growth},
     journal = {Open Mathematics},
     volume = {3},
     year = {2005},
     pages = {644-653},
     zbl = {1106.16023},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02475624}
}
Agata Smoktunowicz. Centers in domains with quadratic growth. Open Mathematics, Tome 3 (2005) pp. 644-653. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02475624/

[1] M. Artin, W. Schelter and J. Tate: “The centers of 3-dimensional Skylyanian algebras”, In: Barsotti Symposium in Algebraic Geometry (Abano Terme, 1991), Perspect. Math., Vol. 15, Academic Press, San Diego, CA, 1994, pp. 1–10. | Zbl 0823.17019

[2] M. Artin and J.T. Stafford: “Noncommutative graded domains with quadratic growth”, Invent. Math., Vol. 122(2), (1995), pp. 231–276. http://dx.doi.org/10.1007/BF01231444 | Zbl 0849.16022

[3] J.P. Bell: private communication.

[4] J.P. Bell and L.W. Small: “Centralizers in domains of Gelfand-Kirillov dimension 2”, Bull. London Math. Soc., Vol. 36(6), pp. 779–785. | Zbl 1080.16015

[5] G.M. Bergman: A note of growth functions of algebras and semigroups, mimeographed notes, University of California, Berkeley, 1978.

[6] G. Krause and T. Lenagan: Growth of Algebras and Gelfand-Kirillov Dimension, Revised Edition, Graduate Studies in Mathematics, Vol. 22, American Society, Providence, 2000. | Zbl 0957.16001

[7] M. Lothaire, Algebraic Combinatorics of Words, Cambridge University Press 2002. | Zbl 1001.68093

[8] J.C. McConnel and J.C. Robson: Noncommutative Noetherian Rings, Wiley Interscience, Chichester, 1987.

[9] L.W. Small, J.T. Stafford and R.B. Warfield Jr: “Affine algebras of Gelfand-Kirillov dimension one are PI”, Math. Proc. Cambridge Phil. Soc., Vol. 97, (1984), pp. 407–414. http://dx.doi.org/10.1017/S0305004100062976 | Zbl 0561.16005

[10] L.W. Small and R.B. Warfield, Jr: “Prime affine algebras of Gelfand-Kirillov dimension one”, J. Algebra, Vol. 91, (1984) pp. 384–389. http://dx.doi.org/10.1016/0021-8693(84)90110-8 | Zbl 0545.16011

[11] S.P. Smith and J.J. Zhang: “A remark of Gelfand-Kirillov dimension”, Proc. Amer. Math. Soc., Vol. 126(2), (1998), pp. 349–352. http://dx.doi.org/10.1090/S0002-9939-98-04074-X | Zbl 0896.16019

[12] A. Smoktunowicz: “On structure of domains with quadratic growth”, J. Algebra, Vol. 289(2), (2005), pp. 365–379. http://dx.doi.org/10.1016/j.jalgebra.2005.04.004 | Zbl 1079.16010

[13] J.T. Stafford and M. Van den Bergh: “Noncommutative curves and noncommutative surfaces”, Bull. Am. Math. Soc., Vol. 38(2), pp. 171–216. | Zbl 1042.16016

[14] J.J. Zhang: “On lower transcendence degree”, Adv. Math., Vol. 139, (1998), pp. 157–193. http://dx.doi.org/10.1006/aima.1998.1749 | Zbl 0924.16015