The paper deals with the real classical Lie algebras and their finite dimensional irreducible representations. Signature formulae for Hermitian forms invariant relative to these representations are considered. It is possible to associate with the irreducible representation a Hurwitz matrix of special kind. So the calculation of the signatures is reduced to the calculation of Hurwitz determinants. Hence it is possible to use the Routh algorithm for the calculation.
@article{bwmeta1.element.doi-10_2478_BF02475621, author = {Alexander Rudy}, title = {The Hurwitz determinants and the signatures of irreducible representations of simple real Lie algebras}, journal = {Open Mathematics}, volume = {3}, year = {2005}, pages = {606-613}, zbl = {1114.17002}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02475621} }
Alexander Rudy. The Hurwitz determinants and the signatures of irreducible representations of simple real Lie algebras. Open Mathematics, Tome 3 (2005) pp. 606-613. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02475621/
[1] F.I. Karpelevich: “Simple subalgebras of real Lie algebras”, Trudy Mosk. Mat. Obshch., Vol. 4, (1955), pp. 3–112. | Zbl 0068.26203
[2] J. Patera and R.T. Sharp: “Signatures of finite su representations”, J. Math. Phys., Vol. 25, (1984), pp. 2128–2131, MR0748387 (85j:22042). http://dx.doi.org/10.1063/1.526420 | Zbl 0552.22011
[3] A.N. Rudy: “Signatures of finite representation of real, simple Lie algebras”, J. Phys. A: Math. Gen., Vol. 26, (1993), pp. 5873–5880, MR1252794(94i:17014). http://dx.doi.org/10.1088/0305-4470/26/21/025 | Zbl 0808.17001
[4] A.N. Rudy: “Signatures of finite classical Lie algebra representations”, J. Phys. A:Math. Gen., Vol. 28 (1995), pp. 1641–1653, MR1338050(96e:17017). http://dx.doi.org/10.1088/0305-4470/28/6/018 | Zbl 0862.17003
[5] N. Burbaki: Groupes et algebras de Lie. Ch. IV–VI, Hermann, Paris, 1968.
[6] F.R. Gantmacher: The theory of matrices, AMS Chelsea Publishing, Providence, RI, 1959. | Zbl 0085.01001