Weights in the cohomology of toric varieties
Andrzej Weber
Open Mathematics, Tome 2 (2004), p. 478-492 / Harvested from The Polish Digital Mathematics Library

We describe the weight filtration in the cohomology of toric varieties. We present a role of the Frobenius automorphism in an elementary way. We prove that equivariant intersection homology of an arbitrary toric variety is pure. We obtain results concerning Koszul duality: nonequivariant intersection cohomology is equal to the cohomology of the Koszul complexIH T*(X)⊗H*(T). We also describe the weight filtration inIH *(X).

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:268729
@article{bwmeta1.element.doi-10_2478_BF02475240,
     author = {Andrzej Weber},
     title = {Weights in the cohomology of toric varieties},
     journal = {Open Mathematics},
     volume = {2},
     year = {2004},
     pages = {478-492},
     zbl = {1077.14074},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02475240}
}
Andrzej Weber. Weights in the cohomology of toric varieties. Open Mathematics, Tome 2 (2004) pp. 478-492. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02475240/

[1] C. Allday, V. Puppe: “On a conjecture of Goresky, Kottwitz and MacPherson”,Canad. J. Math., Vol. 51, (1999), pp. 3–9. | Zbl 0954.18005

[2] G. Barthel, J.P. Brasselet, K.H. Fieseler, L. Kaup: “Equivariant intersection cohomology of toric varieties”,Contemp. Math., Vol. 241, (1999), pp. 45–68. | Zbl 0970.14028

[3] G. Barthel, J.P. Brasselet, K.H. Fieseler, L. Kaup: “Combinatorial intersection cohomology for fans”,Tohoku Math. J., Vol. 2, (2002), pp. 1–41. http://dx.doi.org/10.2748/tmj/1113247177 | Zbl 1055.14024

[4] A.A. Beilinson, J. Bernstein, P. Deligne: “Pierre Faisceaux pervers”,Faisceaux pervers, Analysis and topology on singular spaces, I, (1981), pp. 5–171. (in French)

[5] M. Brion, R. Joshua: “Vanishing of old-dimensional intersection cohomology. II.”,Math. Ann., Vol. 321, (2001), pp. 399–437. http://dx.doi.org/10.1007/s002080100235 | Zbl 0997.14005

[6] J.L. Brylinski: “Equivariant intersection cohomology”,AMS Contemp. Math., Vol. 139, (1992), pp. 5–32. | Zbl 0803.55002

[7] J.L. Brylinski, B. Zhang: “Equivariant Todd classes for toric varieties”,Preprint math. AG/0311318.

[8] V. M. Buchstaber, T. E. Panov: “Torus actions, combinatorial topology, and homological algebra”,Russ. Math. Surv., Vol. 55, (2000), pp. 825–921. (translated fromUsp. Mat. Nauk., Vol. 55, (2000), pp. 3–106) http://dx.doi.org/10.1070/rm2000v055n05ABEH000320 | Zbl 1010.52011

[9] J. Cheeger: “On the Hodge theory of Riemannian pseudomanifolds”,Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawai, 1979), Proc. Symp. Pure Math., XXXVI, Amer. Math. Soc., Providence, R.I., (1980), pp. 91–146.

[10] J. Cheeger, M. Goresky, R. MacPherson: “L 2-cohomology and intersection homology of singular algebraic varieties”,Seminar on Differential Geometry, Ann. of Math. Stud., Princeton Univ. Press, Princeton, N.J., Vol. 102, (1982), pp. 303–340 | Zbl 0503.14008

[11] V. I. Danilov: “The geometry of toric varieties”,Russian Math. Surveys, Vol. 33, (1978), pp. 97–154. http://dx.doi.org/10.1070/RM1978v033n02ABEH002305 | Zbl 0425.14013

[12] P. Deligne: “La conjecture de Weil. I”,Inst. Hautes Études Sci. Publ. Math., Vol. 43, (1974), pp. 273–307; P. Deligne: “La conjecture de Weil. II”,Inst. Hautes Études Sci. Publ. Math., Vol. 52, (1980), pp. 137–252.

[13] P. Deligne: “Theorie de Hodge. II”,Publ. Math., Inst. Hautes Etud. Sci., Vol. 40, (1971), pp. 5–58.

[14] P. Deligne: “Theorie de Hodge. III”,Publ. Math., Inst. Hautes Etud. Sci., Vol. 44, (1974), pp. 5–77.

[15] J. Denef, F. Loeser: “Weights of exponential sums, intersection cohomology, and Newton polyhedra”,Inv. Math., Vol. 109, (1991), pp. 275–294. http://dx.doi.org/10.1007/BF01243914 | Zbl 0763.14025

[16] S. Eilenberg, J. C. Moore: “Homology and fibrations I. Coalgebras, cotensor product and its derived functors”,Comment. Math. Helv., Vol. 40, (1966), pp. 199–236. | Zbl 0148.43203

[17] K.H. Fieseler: “Rational intersection cohomology of projective toric varieties”,J. Reine Angew. Math., Vol. 413, (1991), pp. 88–98. | Zbl 0716.14006

[18] M. Franz: “Thesis: Koszul duality for tori”,Konstanz University, 2001. | Zbl 0978.55004

[19] M. Franz:On the integral cohomology of smooth, toric varieties, Preprint math.AT/0308253.

[20] M. Franz, A. Weber: “Weights in cohomology and the Eilenberg-Moore spectral sequence”, preprinthttp://math.AG/0405589. | Zbl 1145.14021

[21] W. Fulton: “Introduction to toric varieties. Annals of Mathematics Studies”,Princeton University Press Vol. 131, (1993), pp. 157.

[22] M. Goresky, R. Kottwitz, R. MacPherson: “Equivariant cohomology, Koszul duality and the localization theorem”,Inv. Math., Vol. 131, (1998), pp. 25–83. http://dx.doi.org/10.1007/s002220050197 | Zbl 0897.22009

[23] M. Goresky, R. MacPherson: “Intersection homology. II”,Invent. Math., Vol. 72, (1983), pp. 77–129. http://dx.doi.org/10.1007/BF01389130 | Zbl 0529.55007

[24] M.N. Ishida:Torus embeddings and algebraic intersection complexes I, II, algeom/9403008-9.

[25] J. Jurkiewicz: “Chow ring of projective nonsingular torus embedding”,Colloq. Math., Vol. 43, (1980), pp. 261–270. | Zbl 0524.14005

[26] S. Lillywhite, “Formality in an equivariant setting”,Trans. Amer. Math. Soc., Vol. 355, pp. 2771–2793. | Zbl 1021.55006

[27] T. Maszczyk, A. Weber: “Koszul duality for modules over Lie algebra”,Duke Math. J., Vol. 112, (2002), pp. 511–520. http://dx.doi.org/10.1215/S0012-9074-02-11234-4 | Zbl 1014.17018

[28] D. Notbohm, N. Ray: “On Davis Januszkiewicz Homotopy Types I; Formality and Rationalisation”, Preprint math.AT/0311167. | Zbl 1065.55006

[29] T. Oda: “The algebraic de Rham theorem for toric varieties”,Tohoku Math. J., Vol. 2, (1993), pp. 231–247. | Zbl 0776.14003

[30] C. Simpson:The topological realiztion of a simplicial presheaf, Preprint q-alg/9609004.

[31] L. Smith: “On the construction of the Eilenberg-Moore spectral sequence”,Bull. Amer. Math. Soc., Vol. 75, (1969), pp. 873–878. http://dx.doi.org/10.1090/S0002-9904-1969-12335-9 | Zbl 0177.51403

[32] B. Totaro: “Chow groups, Chow cohomology, and linear varieties”,Journal of Algebraic Geometry, to appear.http://www.dpmms.cam.ac.uk/∼bt219/papers.html | Zbl 1329.14018