Extending analyticK-subanalytic functions
Artur Piękosz
Open Mathematics, Tome 2 (2004), p. 362-367 / Harvested from The Polish Digital Mathematics Library

Letg:U→ℝ (U open in ℝn) be an analytic and K-subanalytic (i. e. definable in ℝanK, whereK, the field of exponents, is any subfield ofℝ) function. Then the set of points, denoted Σ, whereg does not admit an analytic extension is K-subanalytic andg can be extended analytically to a neighbourhood of Ū.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:268854
@article{bwmeta1.element.doi-10_2478_BF02475232,
     author = {Artur Pi\k ekosz},
     title = {Extending analyticK-subanalytic functions},
     journal = {Open Mathematics},
     volume = {2},
     year = {2004},
     pages = {362-367},
     zbl = {1093.14510},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02475232}
}
Artur Piękosz. Extending analyticK-subanalytic functions. Open Mathematics, Tome 2 (2004) pp. 362-367. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02475232/

[1] E. Bierstone: “Control of radii of convergence and extension of subanalytic functions,Proc. of the Amer. Math. Soc., Vol. 132, (2004), pp. 997–1003. http://dx.doi.org/10.1090/S0002-9939-03-07191-0 | Zbl 1082.32002

[2] E. Bierstone, P. Milman: “Semianalytic and subanalytic sets”,Inst. Hautes Études Sci. Publ. Math., Vol. 67, (1988), pp 5–42. | Zbl 0674.32002

[3] L. van den Dries: “A generalization of the Tarski-Seidenberg theorem and some nondefinability results”,Bull. Amer. Math. Soc. (N. S.) Vol. 15, (1986), pp. 189–193. http://dx.doi.org/10.1090/S0273-0979-1986-15468-6 | Zbl 0612.03008

[4] L. van den Dries, C. Miller: “Extending Tamm's theorem”,Ann. Inst. Fourier, Grenoble, Vol. 44, (1994), pp. 1367–1395. | Zbl 0816.32004

[5] L. van den Dries, C. Miller: “Geometric categories and o-minimal structures”,Duke Math. Journal, Vol. 84, (1996), pp. 497–540. http://dx.doi.org/10.1215/S0012-7094-96-08416-1 | Zbl 0889.03025

[6] J.-M. Lion, J.-Ph. Rolin: “Théorème de préparation pour les fonctions logarithmico-exponentielles”,Ann. Inst. Fourier, Grenoble, Vol. 47, (1997), 859–884. | Zbl 0873.32004

[7] C. Miller: “Expansion of the real field with power functions”,Ann. Pure Appl. Logic, Vol. 68, (1994), pp. 79–84 http://dx.doi.org/10.1016/0168-0072(94)90048-5

[8] A. Piękosz: “K-subanalytic rectilinearization and uniformization”,Central European Journal of Mathematics, Vol. 1, (2003), pp. 441–456. http://dx.doi.org/10.2478/BF02475178 | Zbl 1038.32010

[9] J.-Cl. Tougeron: “Paramétrisations de petit chemins en géométrie analytique réele”,Singularities and differential equations (Warsaw 1993), Banach Center Publications, Vol. 33, (1996), pp. 421–436.