Here we prove a limit theorem in the sense of the weak convergence of probability measures in the space of meromorphic functions for a general Dirichlet series. The explicit form of the limit measure in this theorem is given.
@article{bwmeta1.element.doi-10_2478_BF02475231, author = {A. Laurin\v cikas and R. Macaitien\.e}, title = {Discrete limit theorems for general Dirichlet series. III}, journal = {Open Mathematics}, volume = {2}, year = {2004}, pages = {339-361}, zbl = {1109.11042}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02475231} }
A. Laurinčikas; R. Macaitienė. Discrete limit theorems for general Dirichlet series. III. Open Mathematics, Tome 2 (2004) pp. 339-361. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02475231/
[1] P. Billingsley:Convergence of Probability Measures, Wiley, New York, 1968.
[2] H. Bohr and B. Jessen: “Über die Werverteilung der Riemannschen Zeta function”. Erste Mitteilung.Acta Math., Vol. 54, (1930), pp. 1–35. | Zbl 56.0287.01
[3] H. Bohr and B. Jessen: “Über die Werverteilung der Riemannschen Zeta function”. Zweite Mitteilung,Acta Math., Vol. 54, (1932), pp. 1–55. | Zbl 58.0321.02
[4] J. Genys and A. Laurinčikas: “Value distribution of general Dirichlet series IV”,Lith. Math. J., Vol. 43, No. 3, (2003), pp. 342–358;Lith. Math. J., Vol. 43, No. 3, (2003), pp. 281–294 (in Russian). http://dx.doi.org/10.1023/A:1026189318741
[5] A. Laurinčikas:Limit Theorems for the Riemann Zeta-Function, Kluwer, Dordrecht, 1996.
[6] A. Laurinčikas: “Value distribution of general Dirichlet series”, In: B. Grigelionis et al. (Eds.):Probab. Theory and Math. Statistics; Proceedings of the seventh Vilnius, TEV, Vilnius, (1999), pp. 405–414. | Zbl 1095.11503
[7] A. Laurinčikas: “Value distribution of general Dirichlet series. II”,Lith. Math. J., Vol. 41, No. 4, (2001), pp. 351–360. http://dx.doi.org/10.1023/A:1013860521038
[8] A. Laurinčikas: “Limit theorems for general Dirichlet series”,Theory Stoch. Proc., Vol. 8, No. 24, (2002), pp. 256–268.
[9] A. Laurinčikas, W. Schwarz and J. Steuding: “Value distribution of general Dirichelet series. III”, In: A. Dubickas et al. (Eds.):Analytic and Probab. Methods in Number Theory. Proc. The Third Palanga Conf., TEV, Vilnius, (2002), pp. 137–156. | Zbl 1195.11118
[10] A. Laurinčikas and R. Macaitienė: “Discrete limit theorems for general Dirichlet series. I,”Chebyshevski sbornik, Vol. 4, No. 3, (2003), pp. 156–170. | Zbl 1105.11030
[11] R. Macaitienė: “Discrete limit theorems for general Dirichlet polynomials”,Lith. Math. J., Vol. 42 (spec. issue), (2002), pp. 705–709.
[12] R. Macaitienė: “Discrete limit theorems for general Dirichlet series. II”,Lith. Math. J., (to appear). | Zbl 1084.60016
[13] H.L. Montgomery:Topics in multiplicative number theory, Springer, Berlin, 1971. | Zbl 0216.03501
[14] E.M. Nikishin: “Dirichlet series with independent exponents and certain of their applications”,Matem.sb, Vol. 96, No. 1, (1975), pp. 3–40 (in Russian).
[15] Y.G. Sinai:Introduction to Ergodic Theory, Princeton Univ. Press, 1976.
[16] A.A. Tempelman:Ergodic Theorems on Groups, Mokslas, Vilnius, 1986.