We give a necessary and sufficient condition for the existence of an exponential attractor. The condition is formulated in the context of metric spaces. It also captures the quantitative properties of the attractor, i.e., the dimension and the rate of attraction. As an application, we show that the evolution operator for the wave equation with nonlinear damping has an exponential attractor.
@article{bwmeta1.element.doi-10_2478_BF02475219, author = {Dalibor Pra\v z\'ak}, title = {A necessary and sufficient condition for the existence of an exponential attractor}, journal = {Open Mathematics}, volume = {1}, year = {2003}, pages = {411-417}, zbl = {1030.37053}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02475219} }
Dalibor Pražák. A necessary and sufficient condition for the existence of an exponential attractor. Open Mathematics, Tome 1 (2003) pp. 411-417. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02475219/
[1] [EFNT] A. Eden, C. Foias, B. Nicolaenko, R. Temam: Exponential attractors for dissipative evolution equations, Wiley & Masson, Chichester, Paris, 1994.
[2] [EM] M. Efendiev and A. Miranville: On the dimension of the global attractor for dissipative reaction-diffusion systems, Preprint.
[3] [EMZ] M. Efendiev, A. Miranville, S. Zelik: “Exponential attractors for a nonlinear reaction-diffusion system in R 3”, Comptes-Rendus de l’Académie des Sciences, Vol. 330, (2000), pp. 713–718. http://dx.doi.org/10.1016/S0764-4442(00)00259-7 | Zbl 1151.35315
[4] [F] E. Feireisl: “Global attractors for semilinear damped wave equations with supercritical exponent”, J. Differential Equations, Vol. 116, (1995), pp. 431–447. http://dx.doi.org/10.1006/jdeq.1995.1042 | Zbl 0819.35097
[5] [MP] J. Málek and D. Pražák: “Large time behavior via the method of ℓ-trajectories”, J. Differential Equations, Vol. 181, (2002), pp. 243–279. http://dx.doi.org/10.1006/jdeq.2001.4087
[6] [P] D. Pražák: “On finite fractal dimension of the global attractor for the wave equation with nonlinear damping”, J. Dynamics Differential Equations, Vol. 14, (2002), pp. 763–776. http://dx.doi.org/10.1023/A:1020756426088