On the torsion of linear higher order connections
Ivan Kolář
Open Mathematics, Tome 1 (2003), p. 360-366 / Harvested from The Polish Digital Mathematics Library

For a linear r-th order connection on the tangent bundle we characterize geometrically its integrability in the sense of the theory of higher order G-structures. Our main tool is a bijection between these connections and the principal connections on the r-th order frame bundle and the comparison of the torsions under both approaches.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:268897
@article{bwmeta1.element.doi-10_2478_BF02475215,
     author = {Ivan Kol\'a\v r},
     title = {On the torsion of linear higher order connections},
     journal = {Open Mathematics},
     volume = {1},
     year = {2003},
     pages = {360-366},
     zbl = {1045.53015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02475215}
}
Ivan Kolář. On the torsion of linear higher order connections. Open Mathematics, Tome 1 (2003) pp. 360-366. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02475215/

[1] A. Cabras and I. Kolář: Flow prolongation of some tangent valued forms, to appear.

[2] M. Elźanowski and S. Prishepionok: “Connections on higher order frame bundles”, New Developments in Differential Geometry, Proceedings, Kluwer, 1996, pp. 131–142. | Zbl 0851.58003

[3] I. Kolář: “Torision free connections on higher order frame bundles”, New Developments in Differential Geometry, Proceedings, Kluwer, 1996, pp. 233–241. | Zbl 0901.53016

[4] I. Kolář, P.W. Michor, J. Slovák: Natural Operations in Differential Geometry, Springer-Verlag, 1993, http://www.math.muni.cz/EMIS/monographs/index.html. | Zbl 0782.53013

[5] P.C. Yuen: “Higher order frames and linear connections”, Cahiers Topol. Geom. Diff., Vol. 12, (1971), pp. 333–371.

[6] A. Zajtz: Foundations of Differential Geometry of Natural Bundles, Lecture Notes Univ. Caracas, 1984.