For a linear r-th order connection on the tangent bundle we characterize geometrically its integrability in the sense of the theory of higher order G-structures. Our main tool is a bijection between these connections and the principal connections on the r-th order frame bundle and the comparison of the torsions under both approaches.
@article{bwmeta1.element.doi-10_2478_BF02475215, author = {Ivan Kol\'a\v r}, title = {On the torsion of linear higher order connections}, journal = {Open Mathematics}, volume = {1}, year = {2003}, pages = {360-366}, zbl = {1045.53015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02475215} }
Ivan Kolář. On the torsion of linear higher order connections. Open Mathematics, Tome 1 (2003) pp. 360-366. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02475215/
[1] A. Cabras and I. Kolář: Flow prolongation of some tangent valued forms, to appear.
[2] M. Elźanowski and S. Prishepionok: “Connections on higher order frame bundles”, New Developments in Differential Geometry, Proceedings, Kluwer, 1996, pp. 131–142. | Zbl 0851.58003
[3] I. Kolář: “Torision free connections on higher order frame bundles”, New Developments in Differential Geometry, Proceedings, Kluwer, 1996, pp. 233–241. | Zbl 0901.53016
[4] I. Kolář, P.W. Michor, J. Slovák: Natural Operations in Differential Geometry, Springer-Verlag, 1993, http://www.math.muni.cz/EMIS/monographs/index.html. | Zbl 0782.53013
[5] P.C. Yuen: “Higher order frames and linear connections”, Cahiers Topol. Geom. Diff., Vol. 12, (1971), pp. 333–371.
[6] A. Zajtz: Foundations of Differential Geometry of Natural Bundles, Lecture Notes Univ. Caracas, 1984.