Decompositions of the category of noncommutative sets and Hochschild and cyclic homology
Jolanta Słomińska
Open Mathematics, Tome 1 (2003), p. 327-331 / Harvested from The Polish Digital Mathematics Library

In this note we show that the main results of the paper [PR] can be obtained as consequences of more general results concerning categories whose morphisms can be uniquely presented as compositions of morphisms of their two subcategories with the same objects. First we will prove these general results and then we will apply it to the case of finite noncommutative sets.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:268887
@article{bwmeta1.element.doi-10_2478_BF02475213,
     author = {Jolanta S\l omi\'nska},
     title = {Decompositions of the category of noncommutative sets and Hochschild and cyclic homology},
     journal = {Open Mathematics},
     volume = {1},
     year = {2003},
     pages = {327-331},
     zbl = {1047.16003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02475213}
}
Jolanta Słomińska. Decompositions of the category of noncommutative sets and Hochschild and cyclic homology. Open Mathematics, Tome 1 (2003) pp. 327-331. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02475213/

[1] A. Connes: “Cohomologie cyclique et foncteurs Ext”, C. R. Acad. Sci. Paris, Vol. 296, (1983), pp. 953–958. | Zbl 0534.18009

[2] Z. Fiedorowicz and J.L. Loday: “Crossed simplicial groups and their associated homology”, Trans. Amer. Math. Soc., Vol. 326, (1991), pp. 57–87. http://dx.doi.org/10.2307/2001855 | Zbl 0755.18005

[3] J. L. Loday: Cyclic Homology, Springer-Verlag, Berlin, 1992.

[4] T. Pirashvili and B. Richter: “Hochschild and cyclic homology via functor homology”, K-Theory, Vol. 25, (2002), pp. 39–49. http://dx.doi.org/10.1023/A:1015064621329 | Zbl 1013.16004

[5] M. Zimmermann: “Changement de base pour les foncteurs Tor”, preprint ArXiv, AT/0303177.