Consider the set A={1,2,3,…,2n}, n≥3 and let x∈ A be unknown element. For given natural number S we are allowed to ask whether x belongs to a subset B of A such that the sum of the elements of B equals S. We investigate for which S it is possible to find x using a nonadaptive search.
@article{bwmeta1.element.doi-10_2478_BF02475209, author = {Emil Kolev}, title = {Nonadaptive search problem with sets of equal sum}, journal = {Open Mathematics}, volume = {1}, year = {2003}, pages = {272-283}, zbl = {1029.05002}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02475209} }
Emil Kolev. Nonadaptive search problem with sets of equal sum. Open Mathematics, Tome 1 (2003) pp. 272-283. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02475209/
[1] J. Czyzowicz, D. Mundici, A. Pelc: “Ulam’s Searching Game With Lies”, J. Combin. Theory Ser. A, Vol. 52, (1989), pp. 62–76. http://dx.doi.org/10.1016/0097-3165(89)90062-9 | Zbl 0674.90110
[2] R. Hill and J.P. Karim: “Searching With lies: the Ulam Problem”, Discrete Mathematics, Vol. 106–107, (1992), pp. 273–283. http://dx.doi.org/10.1016/0012-365X(92)90554-S | Zbl 0771.68043
[3] E. Kolev: “Nonadaptive Search With Sets of Given Sum”, Proc. ACCT’9, Tsarskoe selo, (2002), pp. 159–162.
[4] E. Kolev and I. Landgev: “On a Two-Dimensional Search Problem”, Serdica Math. J., Vol. 21, (1995), pp. 219–230. | Zbl 0837.05006
[5] M. Ruszinko: “On a 2- and 3- Dimensional Search Problem”, Proc. of the Sixt Joint Swedish-Russian Workshop on Inf. Theory, Aug. 21–27, 1993, Mölle, pp. 437–440.
[6] J. Spencer: “Guess a Number-With Lying”, Math. Mag., Vol. 57, (1984), pp. 105–108. http://dx.doi.org/10.2307/2689593 | Zbl 0538.90110