On representation theory and the cohomology rings of irreducible compact hyperkähler manifolds of complex dimension four
Daniel Guan
Open Mathematics, Tome 1 (2003), p. 661-669 / Harvested from The Polish Digital Mathematics Library

In this paper, we continue the study of the possible cohomology rings of compact complex four dimensional irreducible hyperkähler manifolds. In particular, we prove that in the case b 2=7, b 3=0 or 8. The latter was achieved by the Beauville construction.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:268932
@article{bwmeta1.element.doi-10_2478_BF02475186,
     author = {Daniel Guan},
     title = {On representation theory and the cohomology rings of irreducible compact hyperk\"ahler manifolds of complex dimension four},
     journal = {Open Mathematics},
     volume = {1},
     year = {2003},
     pages = {661-669},
     zbl = {1049.53035},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02475186}
}
Daniel Guan. On representation theory and the cohomology rings of irreducible compact hyperkähler manifolds of complex dimension four. Open Mathematics, Tome 1 (2003) pp. 661-669. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02475186/

[1] F. Bogomolov: “Kähler manifolds with trivial canonical class”, Izv. Akad. Nauk. SSSR Ser. Mat., Vol. 38, (1974), pp. 11–21.

[2] F. Bogomolov: “The decomposition of Kähler manifolds with a trivial canonical class”, Mat. Sb. (N.S.), Vol. 38, (1974), pp. 573–575.

[3] F. Bogomolov: “Hamiltonian Kählerian manifolds”, Dolk. Akad. Nauk. SSSR, Vol. 243, (1978), pp. 1101–1104.

[4] F. Bogomolov: “On the cohomology ring of a simple hyperkähler manifold (on the results of Verbisky)”, Geom. Funct. Anal., Vol. 6, (1996), pp. 612–618. http://dx.doi.org/10.1007/BF02247113 | Zbl 0862.53050

[5] A. Beauville: “Variétés Kähleriennes dont la premirè classe de Chern est nulle”, J. Differential Geometry, Vol. 18, (1983), pp. 755–782. | Zbl 0537.53056

[6] C. Chevalley: The Algebraic Theory of Spinors, Columbia University Press, New York, 1954.

[7] D. Guan: “Toward a classification of compact complex homogeneous spaces”, preprint, 1998.

[8] Z. Guan: “Toward a classification of almost homogeneous manifolds I-linearization of the singular extremal rays”, International J. Math., Vol. 8, (1997), pp. 999–1014. http://dx.doi.org/10.1142/S0129167X97000470 | Zbl 0907.14015

[9] D. Guan: “Examples of compact holomorphic symplectic manifolds which are not Kählerian II”, Invent Math., Vol. 121, (1995), pp. 135–145. http://dx.doi.org/10.1007/BF01884293 | Zbl 0827.32026

[10] D. Guan: “Examples of compact holomorphic symplectic manifolds which are not Kählerian III”, Intern. J. of Math., Vol. 6, (1995), pp. 709–718. http://dx.doi.org/10.1142/S0129167X95000298 | Zbl 0857.32018

[11] D. Guan: “On Riemann-Roch formula and bounds of the Betti numbers of irreducible compact hyperkähler manifold of complex dimension four”, first version in 1999, a part of paper appeared in Math. Res. Letters, Vol. 8, (2001), pp. 663–669. | Zbl 1011.53039

[12] J. Humphreys: Introduction to Lie Algebras and Representation Theory, GTM 9, Springer-Verlag, New York, 1987. | Zbl 0254.17004

[13] M. Knus, A. Merkurjev, M. Rost, J. Tignol: The Book of Involutions, Colloquium Publications 44, AMS, Providence, Rhode Island, USA, 1998.

[14] E. Looijenga and V. Lunts: “A Lie algebra attached to a projective variety”, Invent. Math., Vol. 129, (1997), pp. 361–412. http://dx.doi.org/10.1007/s002220050166 | Zbl 0890.53030

[15] K. O'Grady: “Desingularized moduli spaces of sheaves on a K3”, J. Reine Angew. Math., Vol. 512, (1999), pp. 49–117. | Zbl 0928.14029

[16] K. O'Grady: “A new six dimensional irreducible symplectic variety”, preprint, 2000.

[17] W. Scharlau: “Quadratic and Hermitian Forms”, Grundlehren der mathematischen Wissenschaften 270, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1985.

[18] S. Salamon: “Riemannian Geometry and Holonomy Groups”, Pitman Research Notes in Mathematics, Series 201, 1989. | Zbl 0685.53001

[19] S. Salamon: “On the cohomology of Kähler and hyperkähler manifolds”, Topology, Vol. 35, (1996), pp. 137–155. http://dx.doi.org/10.1016/0040-9383(95)00006-2

[20] J. Tits: “Représentations linéaires irréducibles d'un groupe réductif sur un corps quelconque”, J. reine angew. Math., Vol. 247, (1971), pp. 196–220. | Zbl 0227.20015

[21] M. Verbitsky: “Action of the Lie algebra of SO(5) on the cohomology of a hyperkähler manifold”, Functional Anal. appl., Vol. 24, (1991), pp. 229–230. http://dx.doi.org/10.1007/BF01077967 | Zbl 0717.53041

[22] M. Verbitsky: “Cohomology of compact hyperkähler manifolds and its applications”, Geom. Funct. Anal., Vol. 6, (1996), pp. 601–611. http://dx.doi.org/10.1007/BF02247112 | Zbl 0861.53069

[23] M. Verbitsky and D. Kaledin: Hyperkähler Manifolds, International Press, Somerville, Massachusetts, USA, 1999.

[24] S. Yau: “On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation I”, Comm. Pure Appl. Math., Vol. 31, (1978), pp. 339–411. | Zbl 0369.53059