On the Hilbert function of curvilinear zero-dimensional subschemes of projective spaces
E. Ballico ; R. Notari ; M. Spreafico
Open Mathematics, Tome 1 (2003), p. 644-649 / Harvested from The Polish Digital Mathematics Library

Here we show the existence of strong restrictions for the Hilbert function of zerodimensional curvilinear subschemes of P n with one point as support and with high regularity index.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:268722
@article{bwmeta1.element.doi-10_2478_BF02475184,
     author = {E. Ballico and R. Notari and M. Spreafico},
     title = {On the Hilbert function of curvilinear zero-dimensional subschemes of projective spaces},
     journal = {Open Mathematics},
     volume = {1},
     year = {2003},
     pages = {644-649},
     zbl = {1080.14544},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02475184}
}
E. Ballico; R. Notari; M. Spreafico. On the Hilbert function of curvilinear zero-dimensional subschemes of projective spaces. Open Mathematics, Tome 1 (2003) pp. 644-649. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02475184/

[1] C. Ciliberto and R. Miranda: “Interpolations on curvilinear schemes”, J. Algebra, Vol. 203, (1998), pp. 677–678. http://dx.doi.org/10.1006/jabr.1997.7241

[2] Ph. Ellia and Ch. Peskine: “Groupes de points de P 2: caractere et position uniform”, In: Algebraic Geometry, Proceedings, L'Aquila 1988, pp. 111–116, Lect. Notes in Math. 1417, Springer-Verlag, 1990.

[3] G. Fatabbi and A. Lorenzini: “On a sharp bound for the regularity index of any set of fat points”, J. Pure Appl. Algebra, Vol. 161, (2001), pp. 91–111. http://dx.doi.org/10.1016/S0022-4049(00)00083-9 | Zbl 0994.14028

[4] A.V. Geramita, P. Maroscia, L. Roberts: “The Hilbert function of a reduced k-algebra”, J. London Math. Soc., Vol. 28, (1993), pp. 443–452. | Zbl 0535.13012

[5] P.V. Thiên: “Segre bound for the regularity index of fat points in P 3”, J. Pure Appl. Alg., Vol. 151, (2000), pp. 197–214. http://dx.doi.org/10.1016/S0022-4049(99)00055-9 | Zbl 0963.14023