The closure diagram for nilpotent orbits of the split real form of E8
Dragomir Đoković
Open Mathematics, Tome 1 (2003), p. 573-643 / Harvested from The Polish Digital Mathematics Library

Let 𝒪1 and 𝒪2 be adjoint nilpotent orbits in a real semisimple Lie algebra. Write 𝒪1𝒪2 if 𝒪2 is contained in the closure of 𝒪1 . This defines a partial order on the set of such orbits, known as the closure ordering. We determine this order for the split real form of the simple complex Lie algebra, E 8. The proof is based on the fact that the Kostant-Sekiguchi correspondence preserves the closure ordering. We also present a comprehensive list of simple representatives of these orbits, and list the irreeducible components of the boundaries 𝒪1i and of the intersections 𝒪li¯𝒪lj¯ .

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:268838
@article{bwmeta1.element.doi-10_2478_BF02475183,
     author = {Dragomir \DJ okovi\'c},
     title = {The closure diagram for nilpotent orbits of the split real form of E8},
     journal = {Open Mathematics},
     volume = {1},
     year = {2003},
     pages = {573-643},
     zbl = {1050.17006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02475183}
}
Dragomir Đoković. The closure diagram for nilpotent orbits of the split real form of E8. Open Mathematics, Tome 1 (2003) pp. 573-643. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02475183/

[1] D. Barbasch and M.R. Sepanski: “Closure ordering and the Kostant-Sekiguchi correspondence”, Proc. Amer. Math. Soc., Vol. 126, (1998), pp. 311–317. http://dx.doi.org/10.1090/S0002-9939-98-04090-8 | Zbl 0896.22004

[2] W.M. Beynon and N. Spaltenstein: “Green functions of finite Chevalley groups of type E n (n=6, 7, 8)”, J. Algebra, Vol. 88, (1984), pp. 584–614. http://dx.doi.org/10.1016/0021-8693(84)90084-X

[3] N. Bourbaki: Groupes et algèbres de Lie, Chap. 7 et 8, Hermann, Paris, 1975.

[4] R.W. Carter: “Conjugacy classes in the Weyl group”, Comp. Math., Vol. 25, (1972), pp. 1–59. | Zbl 0254.17005

[5] B.W. Char, K.O. Geddes, G.H. Gonnet, B.L. Leong, M.B. Monagan, S.M. Watt: Maple V Language reference Manual, Springer-Verlag, New York, 1991, xv+267 pp.

[6] D.H. Collingwood and W.M. McGovern: Nilpotent Orbits in Semisimple Lie Algebras, Van Nostrand Reinhold, New York, 1993. | Zbl 0972.17008

[7] D.Ž. Đoković: “Classification of nilpotent elements in simple exceptional real Lie algebras of inner type and description of their centralizers”, J. Algebra, Vol. 112, (1988), pp. 503–524. http://dx.doi.org/10.1016/0021-8693(88)90104-4

[8] D.Ž. Đoković: “Explicit Cayley triples in real forms of G 2, F 4, and E 6”, Pacific. J. Math., Vol. 184, (1998), pp. 231–255. | Zbl 1040.17004

[9] D.Ž. Đoković: “Explicit Cayley triples in real forms of E 8”, Pacific J. Math.”, Vol. 194, (2000), pp. 57–82. http://dx.doi.org/10.2140/pjm.2000.194.57 | Zbl 1013.22003

[10] D.Ž. Đoković: “The closure diagrams for nilpotent orbits of real forms of F 4 and G 2”, J. Lie Theory, Vol. 10, (2000), pp. 491–510.

[11] D.Ž. Đoković: “The closure diagrams for nilpotent orbits of real forms of E 6”, J. Lie Theory, 11, (2001), pp. 381–413.

[12] D.Ž. Đoković: “The closure diagrams for nilpotent orbits of the real forms EVI and EVII of E 7”, Represent. Theory, Vol. 5, (2001), pp. 17–42. http://dx.doi.org/10.1090/S1088-4165-01-00112-1 | Zbl 1031.17004

[13] D.Ž. Đoković: “The closure diagram for nilpotent orbits of the split real forms of E 7”, Represent. Theory, Vol. 5, (2001), pp. 284–316. http://dx.doi.org/10.1090/S1088-4165-01-00124-8 | Zbl 1050.17007

[14] D.Ž. Đoković: “The closure diagram for nilpotent orbits of the real form EIX of E 8”, Asian J. Math., Vol. 5, (2001), pp. 561–584. | Zbl 1033.17012

[15] K. Mizuno: “The conjugate classes of unipotent elements of the Chevalley groups E 7 and E 8”, Tokyo J. Math., Vol. 3, (1980), pp. 391–461. http://dx.doi.org/10.3836/tjm/1270473003

[16] A. Mortajine: Classification des espaces préhomogènes de type parabolique réguliers et de leurs invariants relatifs, Hermann, Paris, 1991.

[17] M. Sato and T. Kimura: “A classification of irreducible prehomogeneous vector spaces and their relative invariants”, Nagoya Math. J., Vol. 65, (1977), pp. 1–155. | Zbl 0321.14030

[18] M. Sato, T. Shintani, M. Muro: “Theory of prehomogeneous vector spaces (algebraic part)”, Nagoya Math. J., Vol. 120, (1990), pp. 1–34. | Zbl 0715.22014

[19] M.A.A. van Leeuwen, A.M. Cohen, B. Lisser: LiE, version 2.1, a software package for Lie group theoretic computations, Computer Algebra Group of CWI, Amsterdam, The Netherlands.