In this paper we shall give a topological representation for Hilbert algebras that extend the topological representation given by A. Diego in [4]. For implicative semilattices this representation gives a full duality. We shall also consider the representation for Boolean ring.
@article{bwmeta1.element.doi-10_2478_BF02475182, author = {Sergio Celani}, title = {Representation of Hilbert algebras and implicative semilattices}, journal = {Open Mathematics}, volume = {1}, year = {2003}, pages = {561-572}, zbl = {1034.03056}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02475182} }
Sergio Celani. Representation of Hilbert algebras and implicative semilattices. Open Mathematics, Tome 1 (2003) pp. 561-572. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02475182/
[1] D. Busneag: “A note on deductive systems of a Hilbert algebra”, Kobe Journal of Mathematics, Vol. 2, (1985), pp. 29–35. | Zbl 0584.06005
[2] S.A. Celani: “A note on Homomorphisms of Hilbert Algebras”, International Journal of Mathematical and Mathematics Science, Vol. 29, (2002), pp. 55–61. http://dx.doi.org/10.1155/S0161171202011134 | Zbl 0993.03089
[3] S.A. Celani: “Topological Representation of Distributive Semilattices”, Scientiae Mathematicae Japonicae online, Vol. 8, (2003), pp. 41–51. | Zbl 1041.06002
[4] A. Diego: “Sur les algébras de Hilbert”, Colléction de Logique Math., Serie A, No. 21, Gauthiers-Villars, Paris, (1966).
[5] D. Gluschankof and M. Tilli: “Maximal deductive systems and injective objects in the category of Hilbert algebras”, Zeitschr. f. math. Logik und Grundlagen. d. math., Vol. 34, (1988), pp. 213–220. | Zbl 0657.03032
[6] J. Meng, Y.B. Jun, S.M. Hong: “Implicative semilattices are equivalent to positive implicative BCK-algebras with condition (S)”, Math. Japonica, Vol. 48, (1998), pp. 251–255. | Zbl 0920.06011
[7] A. Monteiro: “Sur les algèbras de Heyting symmétriques”, Portugaliae Mathematica, Vol. 39, (1980), pp. 1–239.
[8] P. Köhler: “Brouwerian semilattices”, Trans. Amer. Math. Soc., Vol. 268, (1981), pp. 103–126. http://dx.doi.org/10.2307/1998339 | Zbl 0473.06003
[9] W.C. Nemitz: “Implicative semi-lattices”, Trans. Amer. Math. Soc., Vol. 117, (1965), pp. 128–142. http://dx.doi.org/10.2307/1994200 | Zbl 0128.24804