Representation of Hilbert algebras and implicative semilattices
Sergio Celani
Open Mathematics, Tome 1 (2003), p. 561-572 / Harvested from The Polish Digital Mathematics Library

In this paper we shall give a topological representation for Hilbert algebras that extend the topological representation given by A. Diego in [4]. For implicative semilattices this representation gives a full duality. We shall also consider the representation for Boolean ring.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:268848
@article{bwmeta1.element.doi-10_2478_BF02475182,
     author = {Sergio Celani},
     title = {Representation of Hilbert algebras and implicative semilattices},
     journal = {Open Mathematics},
     volume = {1},
     year = {2003},
     pages = {561-572},
     zbl = {1034.03056},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02475182}
}
Sergio Celani. Representation of Hilbert algebras and implicative semilattices. Open Mathematics, Tome 1 (2003) pp. 561-572. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02475182/

[1] D. Busneag: “A note on deductive systems of a Hilbert algebra”, Kobe Journal of Mathematics, Vol. 2, (1985), pp. 29–35. | Zbl 0584.06005

[2] S.A. Celani: “A note on Homomorphisms of Hilbert Algebras”, International Journal of Mathematical and Mathematics Science, Vol. 29, (2002), pp. 55–61. http://dx.doi.org/10.1155/S0161171202011134 | Zbl 0993.03089

[3] S.A. Celani: “Topological Representation of Distributive Semilattices”, Scientiae Mathematicae Japonicae online, Vol. 8, (2003), pp. 41–51. | Zbl 1041.06002

[4] A. Diego: “Sur les algébras de Hilbert”, Colléction de Logique Math., Serie A, No. 21, Gauthiers-Villars, Paris, (1966).

[5] D. Gluschankof and M. Tilli: “Maximal deductive systems and injective objects in the category of Hilbert algebras”, Zeitschr. f. math. Logik und Grundlagen. d. math., Vol. 34, (1988), pp. 213–220. | Zbl 0657.03032

[6] J. Meng, Y.B. Jun, S.M. Hong: “Implicative semilattices are equivalent to positive implicative BCK-algebras with condition (S)”, Math. Japonica, Vol. 48, (1998), pp. 251–255. | Zbl 0920.06011

[7] A. Monteiro: “Sur les algèbras de Heyting symmétriques”, Portugaliae Mathematica, Vol. 39, (1980), pp. 1–239.

[8] P. Köhler: “Brouwerian semilattices”, Trans. Amer. Math. Soc., Vol. 268, (1981), pp. 103–126. http://dx.doi.org/10.2307/1998339 | Zbl 0473.06003

[9] W.C. Nemitz: “Implicative semi-lattices”, Trans. Amer. Math. Soc., Vol. 117, (1965), pp. 128–142. http://dx.doi.org/10.2307/1994200 | Zbl 0128.24804