K-subanalytic rectilinearization and uniformization
Artur Piękosz
Open Mathematics, Tome 1 (2003), p. 441-456 / Harvested from The Polish Digital Mathematics Library

We prove rectilinearization and uniformization theorems for K-subanalytic (∝anK-definable) sets and functions using the Lion-Rolin formula. Parallel reasoning gives standard results for the subanalytic case.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:268800
@article{bwmeta1.element.doi-10_2478_BF02475178,
     author = {Artur Pi\k ekosz},
     title = {K-subanalytic rectilinearization and uniformization},
     journal = {Open Mathematics},
     volume = {1},
     year = {2003},
     pages = {441-456},
     zbl = {1038.32010},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02475178}
}
Artur Piękosz. K-subanalytic rectilinearization and uniformization. Open Mathematics, Tome 1 (2003) pp. 441-456. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02475178/

[1] E. Bierstone and P. Milman: “Semianalytic and subanalytuc sets”, Inst. Hautes Étudies Sci. Publ. Math., Vol. 67, (1988), pp. 5–42. | Zbl 0674.32002

[2] L. van den Dries: “A generalization of the Tarski-Seidenberg theorem and some nondefinability results”, Bull. Amer. Math. Soc. (N. S.), Vol. 15, (1986), pp. 189–193. http://dx.doi.org/10.1090/S0273-0979-1986-15468-6 | Zbl 0612.03008

[3] L. van den Dries and C. Miller: “Extending Tamm's theorem”, Ann. Inst. Fourier, Grenoble, Vol. 44, (1994), pp. 1367–1395. | Zbl 0816.32004

[4] L. van den Dries and C. Miller: “Geometric categories and o-minimal structures”, Duke Math. Journal, Vol. 84, (1996), pp. 497–540. http://dx.doi.org/10.1215/S0012-7094-96-08416-1 | Zbl 0889.03025

[5] H. Hironaka: Introduction to real-analytic sets and real-analytic maps, Inst. Matem. “L. Tonelli”, Pisa, 1973.

[6] J.-M. Lion and J.-P. Rolin: “Théorème de préparation pour les fonctions logarithmico-exponentielles”, Ann. Inst. Fourier, Grenoble, Vol. 47, (1997), pp. 859–884. | Zbl 0873.32004

[7] C. Miller: “Expansions of the real field with power functions”, Ann. Pure Appl. Logic, Vol. 68, (1994), pp. 79–84. http://dx.doi.org/10.1016/0168-0072(94)90048-5

[8] A. Parusiński: “Subanalytic functions”, Trans. Amer. Math. Soc., Vol. 344, (1994), pp. 583–595. http://dx.doi.org/10.2307/2154496 | Zbl 0819.32006

[9] A. Parusiński: “Lipschitz stratification of subanalytic sets”, Ann. Scient. Éc. Norm. Sup., 4e série, t. 27, (1994), pp. 661–696. | Zbl 0819.32007

[10] A. Parusiński: “On the preparation theorem for subanalytic functions”, In: D. Siersma, C.T.C. Wall, V. Zakalyukin, (Eds.): New developments in singularity theory (Cambridge 2000), Kluwer Acad. Publ., 2001, pp. 193–215. | Zbl 0994.32007

[11] J.-Cl. Tougeron: “Paramétrisations de petits chemins en géométrie analytique réelle”, In: Singularities and differential equations (Warsaw 1993), Banach Center Publications, Vol. 33, (1996), pp. 421–436.