Schur and Schubert polynomials as Thom polynomials-cohomology of moduli spaces
László Fehér ; Richárd Rimányi
Open Mathematics, Tome 1 (2003), p. 418-434 / Harvested from The Polish Digital Mathematics Library

The theory of Schur and Schubert polynomials is revisited in this paper from the point of view of generalized Thom polynomials. When we apply a general method to compute Thom polynomials for this case we obtain a new definition for (double versions of) Schur and Schubert polynomials: they will be solutions of interpolation problems.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:268868
@article{bwmeta1.element.doi-10_2478_BF02475176,
     author = {L\'aszl\'o Feh\'er and Rich\'ard Rim\'anyi},
     title = {Schur and Schubert polynomials as Thom polynomials-cohomology of moduli spaces},
     journal = {Open Mathematics},
     volume = {1},
     year = {2003},
     pages = {418-434},
     zbl = {1038.57008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02475176}
}
László Fehér; Richárd Rimányi. Schur and Schubert polynomials as Thom polynomials-cohomology of moduli spaces. Open Mathematics, Tome 1 (2003) pp. 418-434. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02475176/

[1] [AB82] M.F. Atiyah and R. Bott: “The Yang-Mills equations over Riemann surfaces”, Philos. Trans. Roy. Soc. London Ser. A, Vol. 308, (1982), pp. 523–615. | Zbl 0509.14014

[2] [AVGL91] V.I. Arnold, V.A. Vassiliev, V.V. Goryunov, O.V. Lyashko: “Singularities. Local and global theory”, Enc. Math. Sci. Dynamical Systems VI, Springer-Verlag, Berlin, 1991.

[3] [BF99] A. Buch and W. Fulton: “Chern class formulas for quiver varieties”, Inv. Math., Vol. 135, (1999), pp. 665–687. http://dx.doi.org/10.1007/s002220050297[Crossref] | Zbl 0942.14027

[4] [CLL02] W. Chen, B. Li, J.D. Louck: “The flagged double schur function”, J. Algebraic Combin., Vol. 15, (2002), pp. 7–26. http://dx.doi.org/10.1023/A:1013217015135[Crossref] | Zbl 0990.05133

[5] [FP89] W. Fulton and P. Pragacz: Schubert Varieties and Degeneracy Loci, Springer-Verlag, Berlin, 1998.

[6] [FR02] L. Fehér and R. Rimányi: “Classes of degeneraci loci for quivers-the Thom polynomial point of view”, Duke J. Math., Vol. 114, (2002), pp. 193–213. http://dx.doi.org/10.1215/S0012-7094-02-11421-5[Crossref] | Zbl 1054.14010

[7] [FR03] L. M. Fehér and R. Rimányi: “Calculation of Thom polynomials and other cohomological obstructions for group actions”, to appear in Sao Carlos Singularities 2002, Cont. Math. AMS, 2003.

[8] [FRN03] L. Fehér, A. Némethi, R. Rimányi: Coincident root loci of binary forms, http://www.math.ohio-state.edu/∼rimanyi/cikkek, 2003. | Zbl 1115.14046

[9] [Ful92] W. Fulton: “Flags, Schubert polynomials, degeneracy loci, and determinantal formulas”, Duke Math. J., Vol. 65, (1992), pp. 381–420. http://dx.doi.org/10.1215/S0012-7094-92-06516-1[Crossref] | Zbl 0788.14044

[10] [Ful98] W. Fulton: Intersection Theory. Springer, Berlin, 1984, 1998. [WoS]

[11] [Kaz95] M. Kazarian: “Characteristic classes of Lagrange and Legendre singularities”, Russian Math. Surv., Vol. 50, (1995), pp. 701–726. http://dx.doi.org/10.1070/RM1995v050n04ABEH002579[Crossref] | Zbl 0868.58030

[12] [Kaz97] M.É. Kazarian: “Characteristic classes of singularity theory”, In: V.I. Arnold et al., (Eds): The Arnold-Gelfand mathematical seminars: geometry and singularity theory, Birkhauser Boston, Boston MA, 1997, pp. 325–340.

[13] [Kaz00] M. Kazarian: “Thom polynomials for Lagrange, Legendre and critical point singularities”, Isaac Newton Institute for Math. Sci., preprint, 2000.

[14] [Kir84] F. Kirwan: Cohomology of quotients in symplectic and algebraic geometry. No. 31, in Mathematical Notes, Princeton University Press, Princeton NY, 1984.

[15] [Kir92] F. Kirwan: “The cohomology rings of moduli spaces of bundles over Riemann surfaces”, J. Amer. Math. Soc., Vol. 5, (1992), pp. 853–906. http://dx.doi.org/10.2307/2152712[Crossref]

[16] [KL74] G. Kempf and D. Laksov: “The determinantal formula of Schubert calculus”, Acta. Math., Vol. 132, (1974), pp. 153–162. http://dx.doi.org/10.1007/BF02392111[Crossref] | Zbl 0295.14023

[17] [Las74] Alain Lascoux: “Puissances extérieures, déterminants et cycles de Schubert”, Bull. Soc. Math. France, Vol. 102, (1974), pp. 161–179. | Zbl 0295.14024

[18] [LS82] Lascoux and Schützenberger: “Polynômes de Schubert”, C. R. Acad. Sci. Paris, Vol. 294, (1982), pp. 447–450. | Zbl 0495.14031

[19] [Mac91] I.G. MacDonald: Notes on Schubert polynomials, LACIM 6, 1991.

[20] [Pra88] Piotr Pragacz: “Enumerative geometry of degeneracy loci”, Ann. Sci. École Norm. Sup. (4), Vol. 21, (1988), pp. 413–454. | Zbl 0687.14043

[21] [Rim01] R. Rimányi: “Thom polynomials, symmetries and incidences of singularities”, Inv. Math., Vol. 143, (2001), pp. 499–521. http://dx.doi.org/10.1007/s002220000113[Crossref] | Zbl 0985.32012

[22] [Sti36] E. Stiefel: “Richtungsfelder und Fernparallelismus in Mannigfaltigkeiten”, Comm. Math. Helv., Vol. 8, (1936), pp. 3–51. | Zbl 62.0662.02

[23] [Szű79] A. Szűcs: “Analogue of the Thom space for mapping with singularity of type ∑1”, Math. Sb. (N. S.), Vol. 108, (1979), pp. 438–456.

[24] [Vas88] V.A. Vassiliev: Lagrange and Legendre Characteristic Classes, Gordon and Breach, New York, 1988.