Phase retrieval using random cubatures and fusion frames of positive semidefinite matrices
Martin Ehler ; Manuel Gräf ; Franz J. Király
Waves, Wavelets and Fractals, Tome 1 (2015), / Harvested from The Polish Digital Mathematics Library

As a generalization of the standard phase retrieval problem,we seek to reconstruct symmetric rank- 1 matrices from inner products with subclasses of positive semidefinite matrices. For such subclasses, we introduce random cubatures for spaces of multivariate polynomials based on moment conditions. The inner products with samples from sufficiently strong random cubatures allow the reconstruction of symmetric rank- 1 matrices with a decent probability by solving the feasibility problem of a semidefinite program.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:276543
@article{bwmeta1.element.doi-10_1515_wwfaa-2015-0005,
     author = {Martin Ehler and Manuel Gr\"af and Franz J. Kir\'aly},
     title = {Phase retrieval using random cubatures and fusion frames of positive semidefinite matrices},
     journal = {Waves, Wavelets and Fractals},
     volume = {1},
     year = {2015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_wwfaa-2015-0005}
}
Martin Ehler; Manuel Gräf; Franz J. Király. Phase retrieval using random cubatures and fusion frames of positive semidefinite matrices. Waves, Wavelets and Fractals, Tome 1 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_wwfaa-2015-0005/

[1] C. Bachoc and M. Ehler, Tight p-fusion frames, Appl. Comput. Harmon. Anal. 35 (2013), no. 1, 1–15. [Crossref][WoS] | Zbl 1293.42031

[2] C. Bachoc and M. Ehler, Signal reconstruction from the magnitude of subspace components, IEEE Trans. Inform. Theory 61 (2015), no. 7, 1–13. [WoS][Crossref]

[3] R. Balan, Stability of phase retrievable frames, arXiv:1308.5465v1 (2013).

[4] R. Balan, P. Casazza, and D. Edidin, On signal reconstruction without phase, Appl. Comput. Harmon. Anal 20 (2006), 345– 356. [Crossref] | Zbl 1090.94006

[5] A. S. Bandeira, J. Cahill, D. G. Mixon, and A. A. Nelson, Saving phase: Injectivity and stability for phase retrieval, Appl. Comput. Harmon. Anal. 37 (2014), no. 1, 106–125. [Crossref][WoS] | Zbl 1305.90330

[6] F. Barthe, F. Gamboa, L.-V. Lozada-Chang, and A. Rouault, Generalized Dirichlet distributions on the ball and moments, Alea 7 (2010), 319–340. | Zbl 1276.30051

[7] B. Bhatia, Matrix analysis, Springer, New York, 1996. | Zbl 0863.15001

[8] B. G. Bodmann and N. Hammen, Stable phase retrieval with low-redundancy frames, arXiv:1302.5487v1 (2013). [WoS] | Zbl 1316.42035

[9] A. Bondarenko, D. Radchenko, and M. Viazovska, Optimal asymptotic bounds for spherical designs, arXiv:1009.4407v3 (2011). | Zbl 1270.05026

[10] A. V. Bondarenko, D. V. Radchenko, and M. S. Viazovska, On optimal asymptotic bounds for spherical designs, arXiv:1009.4407v1 (2010). | Zbl 1270.05026

[11] J. Cahill, P. G. Casazza, J. Peterson, and L. Woodland, Phase retrieval by projections, arXiv:1305.6226v3 (2013). | Zbl 06632093

[12] E. J. Candès, Y. Eldar, T. Strohmer, and V. Voroninski, Phase retrieval via matrix completion, arXiv:1109.0573v2 (2011). | Zbl 1344.49057

[13] E. J. Candès and X. Li., Solving quadratic equations via PhaseLift when there are about as many equations as unknowns, Foundations of Computational Mathematics 14 (2014), 1017–1026. [Crossref][WoS] | Zbl 1312.90054

[14] E. J. Candès, T. Strohmer, and V. Voroninski, PhaseLift: Exact and stable signal recovery from magnitude measurements via convex programming, Communications on Pure and Applied Mathematics, DOI:10.1002/cpa.21432 66 (2013), no. 8, 1241– 1274. [WoS][Crossref] | Zbl 1335.94013

[15] Y. Chikuse, Statistics on special manifolds, Lecture Notes in Statistics, Springer, New York, 2003. | Zbl 1026.62051

[16] P. de la Harpe and C. Pache, Cubature formulas, geometrical designs, reproducing kernels, and Markov operators, Infinite groups: geometric, combinatorial and dynamical aspects (Basel), vol. 248, Birkhäuser, 2005, pp. 219–267. | Zbl 1124.05019

[17] L. Demanet and P. Hand, Stable optimizationless recovery from phaseless linear measurements, J. Fourier Anal. Appl. 20 (2014), 199–221. [Crossref][WoS] | Zbl 1330.90069

[18] M. Ehler, Random tight frames, J. Fourier Anal. Appl. 18 (2012), no. 1, 1–20. [Crossref] | Zbl 1247.42026

[19] M. Ehler and M. Gräf, Cubatures and designs in unions of Grassmann spaces, arXiv (2014).

[20] M. Ehler and S. Kunis, Phase retrieval using time and Fourier magnitude measurements, 10th International Conference on Sampling Theory and Applications, 2013.

[21] V. Elser and R. P. Millane, Reconstruction of an object from its symmetry-averaged diffraction pattern, Acta Crystallographica Section A 64 (2008), no. 2, 273–279. [WoS]

[22] J. R. Fienup, Phase retrieval algorithms: a comparison, Applied Optics 21 (1982), no. 15, 2758–2769. [Crossref]

[23] F. Filbir and H. N. Mhaskar, A quadrature formula for diffusion polynomials corresponding to a generalized heat kernel, J. Fourier Anal. Appl. 16 (2010), no. 5, 629–657. [Crossref][WoS] | Zbl 1204.41005

[24] R.W. Gerchberg andW. O. Saxton, A practical algorithm for the determination of the phase from image and diffraction plane pictures, Optik 35 (1972), no. 2, 237–246.

[25] D. Gross, Recovering low-rank matrices from few coefficients in any basis, IEEE Trans. Inform. Theory 57 (2011), 1548–1566. [WoS][Crossref]

[26] D. Gross, F. Krahmer, and R. Kueng, A partial derandomization of PhaseLift using spherical designs, J. Fourier Anal. Appl. 21 (2015), no. 2, 229–266. [WoS][Crossref] | Zbl 1332.90197

[27] A. T. James, Distributions of matrix variates and latent roots derived from normal samples, Annals ofMathematical Statistics 35 (1964), no. 2, 475–501. [Crossref] | Zbl 0121.36605

[28] A. T. James and A. G. Constantine, Generalized Jacobi polynomials as spherical functions of the Grassmann manifold, Proc. London Math. Soc. 29 (1974), no. 3, 174–192. [Crossref] | Zbl 0289.33031

[29] H. König, Cubature formulas on spheres, Adv. Multivar. Approx. Math. Res. 107 (1999), 201–211. | Zbl 0977.41014

[30] R. Kueng, H. Rauhut, and U. Terstiege, Low rank matrix recovery from rank one measurements, arXiv:1410.6913 (2014).

[31] H. N. Mhaskar, F. J. Narcowich, and J. D. Ward, Spherical Marcinkiewicz-Zygmund inequalities and positive quadrature, Math. Comp. 70 (2002), 1113–1130. [Crossref] | Zbl 0980.76070

[32] R. J. Muirhead, Aspects of multivariate statistical theory, John Wiley & Sons, New York, 1982. | Zbl 0556.62028

[33] F. Philipp, Phase retrieval from 4n-4 measurements: A proof for injectivity, Proc. Appl. Math. Mech. 14 (2014), no. 833-834. [Crossref]

[34] E. Riegler and G. Tauböck, Almost lossless analog compression without phase information, in Proc. IEEE Int. Symp. Inf. Th. (Hong Kong, China), 2015, pp. 1–5.

[35] T. Strohmer and R. W. Heath, Grassmannian frames with applications to coding and communication, Appl. Comput. Harmon. Anal. 14 (2003), no. 3, 257–275. [Crossref] | Zbl 1028.42020

[36] J.A. Tropp, User-friendly tools for random matrices: An introduction., NIPS.

[37] J.A. Tropp„ User-friendly tail bounds for sums of random matrices, Journal Foundations of Computational Mathematics 12 (2012), no. 4, 389–434. [WoS] | Zbl 1259.60008

[38] I. Waldspurger, A. d’Aspremont, and S. Mallat, Phase recovery, maxcut and complex semidefinite programming, arXiv:1206.0102v2 (2012). | Zbl 1329.94018

[39] T. Wong, Generalized Dirichlet distribution in Bayesian analysis, Appl. Math. Comput. 97 (1998), no. 2-3, 165–181. [Crossref] | Zbl 0945.62036