Analytic solutions of the Helmholtz and Laplace equations by using local fractional derivative operators
Jamshad Ahmad ; Syed Tauseef Mohyud-Din ; H. M. Srivastava ; Xiao-Jun Yang
Waves, Wavelets and Fractals, Tome 1 (2015), / Harvested from The Polish Digital Mathematics Library

In this paper we develop analytical solutions for the Helmholtz and Laplace equations involving local fractional derivative operators. We implement the local fractional decomposition method (LFDM) for finding the exact solutions. The iteration procedure is based upon the local fractional derivative sense. The numerical results, whichwe present in this paper, show that the methodology used provides an efficient and simple tool for solving fractal phenomena arising in mathematical physics and engineering. Several illustrative examples are also provided.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:276455
@article{bwmeta1.element.doi-10_1515_wwfaa-2015-0003,
     author = {Jamshad Ahmad and Syed Tauseef Mohyud-Din and H. M. Srivastava and Xiao-Jun Yang},
     title = {Analytic solutions of the Helmholtz and Laplace equations by using local fractional derivative operators},
     journal = {Waves, Wavelets and Fractals},
     volume = {1},
     year = {2015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_wwfaa-2015-0003}
}
Jamshad Ahmad; Syed Tauseef Mohyud-Din; H. M. Srivastava; Xiao-Jun Yang. Analytic solutions of the Helmholtz and Laplace equations by using local fractional derivative operators. Waves, Wavelets and Fractals, Tome 1 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_wwfaa-2015-0003/

[1] K.M. Kolwankar, A.D. Gangal, Phys. Rev. Lett. 80, 214 (1998).

[2] A. Carpinteri, B. Chiaia, P. Cornetti, Comput. Method. Appl. Mech. Engrg. 191, 3 (2001).

[3] F.B. Adda, J. Cresson, J. Math. Anal. Appl. 263, 721 (2001).

[4] A. Babakhani, V.G. Daftardar, J. Math. Anal. Appl. 270, 66 (2002).

[5] G. Jumarie, Appl. Math. Lett. 22, 378 (2009). [Crossref]

[6] W. Chen, H. Sun, X. Zhang, D. Korosak, Comput. Math. Appl. 59, 1754 (2010).

[7] X.-J. Yang, Local Fractional Functional Analysis and its Applications (Asian Academic Publisher, Hong Kong, PRC, 2011).

[8] X.-J. Yang, Advanced Local Fractional Calculus and Its Applications (World Science Publisher, New York, USA, 2012).

[9] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and applications of Fractional Differential Equations (Elsevier/North- Holloand Science Publishers, Amsterdam, The Netherlands, 2006). | Zbl 1092.45003

[10] X.-J. Yang, D. Baleanu, Therm. Sci. 17, 625 (2013). [Crossref]

[11] X.-J. Yang, H.M. Srivastava, J.-H. He, D. Baleanu, Phys. Lett. A. 377, 1696 (2013).

[12] J. Ahmad, S.T. Mohyud-Din, Proc. Pakistan Acad. Sci. 52, 71 (2015).

[13] Y.-J. Yang, D. Baleanu, X.J. Yang, Abstr. Appl. Anal. 2013, Art. ID 202650 (2013).

[14] A.K. Golmankhaneh, V. Fazlollahi, D. Baleanu, Rom. Rep. Phys. 65, 93 (2013).

[15] Y.-J. Hao, H.M. Srivastava, H. Jafari, X.-J. Yang, Adv. Math. Phys. 2013, 754248 (2013).

[16] J.-H. He, Internat. J. Non-Linear Mech. 34, 708 (1999).

[17] Y. Khan, S.T. Mohyud-Din, Internat. J. Nonlinear Sci. Numer. Simulat. 12, 1103, (2010).

[18] J. Hristov, Therm. Sci. 14, 291 (2010). [Crossref]

[19] J. Ahmad, S.T. Mohyud-Din, Plus One. 9, Article ID e109127 (2014). [Crossref]

[20] H. Jafari, S. Seifi, Commun. Nonlinear Sci. 14, 2006 (2009). [Crossref]

[21] S. Zhang, H.-Q. Zhang, Phys. Lett. A, 375, 1069 (2011).

[22] Y. Khan, N. Faraz, A. Yildirim, Q.-B.Wu, Comput.Math. Appl. 62, 2273 (2011). [Crossref]

[23] D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional calculus models and numerical methods, (World Scientific, Boston, USA, 2012). | Zbl 1248.26011

[24] C. Li, Y. Wang, Comput. Math. Appl. 57, 1672 (2009). [Crossref]

[25] H. Jafari, V.G. Daftardar, J. Comput. Appl.Math. 196, 644 (2006).

[26] S. Momani, Z. Odibat, Appl. Math. Comput. 177, 488 (2006).

[27] S.S. Ray, R.K. Bera, Appl. Math. Comput. 174, 329 (2006).

[28] Q. Wang, Appl. Math. Comput. 182, 1048 (2006).

[29] H. Jafari, V.G. Daftardar, Appl. Math. Comput. 180, 488 (2006).

[30] M. Safari, D.D. Ganji, M. Moslemi, Comput.Math. Appl. 58, 2091 (2009). [Crossref]

[31] M. El-Shahed, J. Fract. Calc. 24, 23 (2003).

[32] X.-J. Yang, D. Baleanu, W.-P. Zhong, Proc. Roman. Acad. Ser. A, 14, 127 (2013).

[33] X.-J. Yang, D. Baleanu, M. P. Lazareviæ, M. S. Cajiæ, Therm. Sci. 2013, DOI: 10.2298/TSCI130717103Y, (2013). [Crossref]

[34] A.-M. Yang, Y.-Z. Zhang, Y. Long, Therm. Sci. 17, 707 (2013). [Crossref]

[35] C.-F. Liu, S.-S. Kong, S.-J. Yuan, Therm. Sci. 17, 715 (2013). [Crossref]

[36] J. Ahmad, S.T. Mohyud-Din, Life Sci. J. 10, 210 (2013).

[37] X.-J. Yang, Y.-D. Zhang, Adv. Inform. Tech. Managem. 1, 158 (2012).

[38] X.-J. Yang, Progr. Nonlinear Sci. 4, 1 (2011).

[39] M. Liao, X.-J. Yang, Q. Yan, A New viewpoint to Fourier analysis in fractal space (Advances in Applied mathematics and Approximation Theory, Springer, 397, 2013).

[40] A.-M. Yang, Z.-S. Chen, H.M. Srivastava, X.-J. Yang, Abstr. Appl. Anal. 2013, Article ID 259125 (2013).

[41] Y.-J. Yang, D. Baleanu, X.-J. Yang, Abstr. Appl. Anal. 2013, Article ID 202650 (2013).