An A-manifold is a manifold whose Ricci tensor is cyclic-parallel, equivalently it satisfies ∇XXRic(X,X) = 0. This condition generalizes the Einstein condition. We construct new examples of A-manifolds on r-torus bundles over a base which is a product of almost Hodge A-manifolds
@article{bwmeta1.element.doi-10_1515_umcsmath-2015-0016, author = {Grzegorz Zborowski}, title = {A-manifolds on a principal torus bundle over an almost Hodge A-manifold base}, journal = {Annales UMCS, Mathematica}, volume = {68}, year = {2015}, pages = {109-119}, zbl = {1323.53051}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_umcsmath-2015-0016} }
Grzegorz Zborowski. A-manifolds on a principal torus bundle over an almost Hodge A-manifold base. Annales UMCS, Mathematica, Tome 68 (2015) pp. 109-119. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_umcsmath-2015-0016/
[1] Besse, A., Einstein Manifolds, Springer-Verlag, Berlin, Heidelberg, 1987.
[2] Gray, A., Einstein-like manifolds which are not Einstein, Geom. Dedicata 7 (1978), 259-280. | Zbl 0378.53018
[3] Jelonek, W., On A-tensors in Riemannian geometry, preprint PAN 551, 1995.
[4] Jelonek, W., K-contact A-manifolds, Colloq. Math. 75 (1) (1998), 97-103. | Zbl 0893.53018
[5] Jelonek, W., Almost K¨ahler A-structures on twistor bundles, Ann. Glob. Anal. Geom. 17 (1999), 329-339. | Zbl 0982.53045
[6] Kobayashi, S., Principal fibre bundles with the 1-dimensional toroidal group, Tohoku Math. J. 8 (1956), 29-45. | Zbl 0075.32103
[7] Moroianu, A., Semmelmann, U., Twistor forms on K¨ahler manifolds, Ann. Sc. Norm. Super. Pisa Cl. Sci. 2 (2003), 823-845. | Zbl 1121.53050
[8] O’Neill, B., The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459-469.
[9] Pedersen, H., Todd, P., The Ledger curvature conditions and D’Atri geometry, Differential Geom. Appl. 11 (1999), 155-162. | Zbl 0944.53025
[10] Sekigawa, K., Vanhecke, L., Symplectic geodesic symmetries on K¨ahler manifolds, Quart. J. Math. Oxford Ser. (2) 37 (1986), 95-103. | Zbl 0589.53068
[11] Semmelmann, U., Conformal Killing forms on Riemannian manifolds, preprint, arXiv:math/0206117.
[12] Tang, Z., Yan, W., Isoparametric foliation and a problem of Besse on generalizations of Einstein condition, preprint, arXiv:math/1307.3807.
[13] Wang, M. Y., Ziller, W., Einstein metrics on torus bundles, J. Differential Geom. 31 (1990), 215-248. | Zbl 0691.53036
[14] Zborowski, G., Construction of an A-manifold on a principal torus bundle, Ann. Univ. Paedagog. Crac. Stud. Math. 12 (2013), 5-19. | Zbl 1303.53059