The natural transformations between T-th order prolongation of tangent and cotangent bundles over Riemannian manifolds
Mariusz Plaszczyk
Annales UMCS, Mathematica, Tome 68 (2015), p. 91-108 / Harvested from The Polish Digital Mathematics Library

If (M,g) is a Riemannian manifold then there is the well-known base preserving vector bundle isomorphism TM → T* M given by v → g(v,−) between the tangent TM and the cotangent T* M bundles of M. In the present note first we generalize this isomorphism to the one JrTM → JrTM between the r-th order prolongation JrTM of tangent TM and the r-th order prolongation JrT M of cotangent TM bundles of M. Further we describe all base preserving vector bundle maps DM(g) : JrTM → JrT* M depending on a Riemannian metric g in terms of natural (in g) tensor fields on M

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:270870
@article{bwmeta1.element.doi-10_1515_umcsmath-2015-0015,
     author = {Mariusz Plaszczyk},
     title = {The natural transformations between T-th order prolongation of tangent and cotangent bundles over Riemannian manifolds},
     journal = {Annales UMCS, Mathematica},
     volume = {68},
     year = {2015},
     pages = {91-108},
     zbl = {1321.58002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_umcsmath-2015-0015}
}
Mariusz Plaszczyk. The natural transformations between T-th order prolongation of tangent and cotangent bundles over Riemannian manifolds. Annales UMCS, Mathematica, Tome 68 (2015) pp. 91-108. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_umcsmath-2015-0015/

[1] Epstein, D. B. A., Natural tensors on Riemannian manifolds, J. Differential Geom. 10 (1975), 631-645. | Zbl 0321.53039

[2] Kobayashi, S., Nomizu, K., Foundations of Differential Geometry, Vol. I, J. Wiley- Interscience, New York-London, 1963. | Zbl 0119.37502

[3] Kolář, I., Connections on higher order frame bundles and their gauge analogies, Variations, Geometry and Physics, Nova Sci. Publ., New York, 2009, 167-188. | Zbl 1208.58003

[4] Kolář, I., Michor, P. W., Slovák, J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993. | Zbl 0782.53013

[5] Kurek, J., Mikulski, W. M., The natural transformations between r-tangent and rcotangent bundles over Riemannian manifolds, Ann. Univ. Mariae Curie-Skłodowska Sect. A 68 (2) (2014), 59-64. | Zbl 1312.58003

[6] Kurek, J., Mikulski, W. M., The natural operators lifting connections to tensor powers of the cotangent bundle, Miskolc Mathematical Notes 14, No. 2 (2013), 517-524. | Zbl 1299.53070

[7] Mikulski, W. M., Lifting connections to the