The notion of normal pseudo-BCI-algebras is studied and some characterizations of it are given. Extensions of pseudo-BCI-algebras are also considered.
@article{bwmeta1.element.doi-10_1515_umcsmath-2015-0012, author = {Grzegorz Dymek}, title = {On pseudo-BCI-algebras}, journal = {Annales UMCS, Mathematica}, volume = {68}, year = {2015}, pages = {59-71}, zbl = {06472904}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_umcsmath-2015-0012} }
Grzegorz Dymek. On pseudo-BCI-algebras. Annales UMCS, Mathematica, Tome 68 (2015) pp. 59-71. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_umcsmath-2015-0012/
[1] Dudek, W. A., Jun, Y. B., Pseudo-BCI algebras, East Asian Math. J. 24 (2008), 187-190. | Zbl 1149.06010
[2] Dymek, G., Atoms and ideals of pseudo-BCI-algebras, Comment. Math. 52 (2012), 73-90. | Zbl 1294.06021
[3] Dymek, G., p-semisimple pseudo-BCI-algebras, J. Mult.-Valued Logic Soft Comput. 19 (2012), 461-474.
[4] Dymek, G., On compatible deductive systems of pseudo-BCI-algebras, J. Mult.-Valued Logic Soft Comput. 22 (2014), 167-187. | Zbl 1319.06014
[5] Dymek, G., Kozanecka-Dymek, A., Pseudo-BCI-logic, Bull. Sect. Logic Univ. Łódż 42 (2013), 33-42. | Zbl 1287.03058
[6] Halaˇs, R., K¨uhr, J., Deductive systems and annihilators of pseudo-BCK-algebras, Ital. J. Pure Appl. Math. 25 (2009).
[7] Iorgulescu, A., Algebras of Logic as BCK Algebras, Editura ASE, Bucharest, 2008. | Zbl 1172.03038
[8] Is´eki, K., An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966), 26-29.
[9] Jun, Y. B., Kim, H. S., Neggers, J., On pseudo-BCI ideals of pseudo BCI-algebras, Mat. Vesnik 58 (2006), 39-46. | Zbl 1119.03068