Renormings of c 0 and the minimal displacement problem
Łukasz Piasecki
Annales UMCS, Mathematica, Tome 68 (2015), / Harvested from The Polish Digital Mathematics Library

The aim of this paper is to show that for every Banach space (X, || · ||) containing asymptotically isometric copy of the space c0 there is a bounded, closed and convex set C ⊂ X with the Chebyshev radius r(C) = 1 such that for every k ≥ 1 there exists a k-contractive mapping T : C → C with [...] for any x ∊ C.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:270005
@article{bwmeta1.element.doi-10_1515_umcsmath-2015-0008,
     author = {\L ukasz Piasecki},
     title = {
      Renormings of c
      0
      and the minimal displacement problem
    },
     journal = {Annales UMCS, Mathematica},
     volume = {68},
     year = {2015},
     zbl = {1317.46009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_umcsmath-2015-0008}
}
Łukasz Piasecki. 
      Renormings of c
      0
      and the minimal displacement problem
    . Annales UMCS, Mathematica, Tome 68 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_umcsmath-2015-0008/

[1] Bolibok, K., The minimal displacement problem in the space l∞, Cent. Eur. J. Math. 10 (2012), 2211-2214.[WoS] | Zbl 06137116

[2] Bolibok, K., Constructions of lipschitzian mappings with non zero minimal displacement in spaces L1 (0, 1) and L2 (0, 1), Ann. Univ. Mariae Curie-Skłodowska Sec. A 50 (1996), 25-31.

[3] Dowling, P. N., Lennard C. J., Turett, B., Reflexivity and the fixed point property for nonexpansive maps, J. Math. Anal. Appl. 200 (1996), 653-662. | Zbl 0863.47038

[4] Dowling, P. N., Lennard, C. J., Turett, B., Some fixed point results in l1 and c0, Nonlinear Anal. 39 (2000), 929-936. | Zbl 0954.47043

[5] Dowling, P. N., Lennard C. J., Turett , B., Asymptotically isometric copies of c0 in Banach spaces, J. Math. Anal. Appl. 219 (1998), 377-391. | Zbl 0916.46007

[6] Goebel, K., On the minimal displacement of points under lipschitzian mappings, Pacific J. Math. 45 (1973), 151-163. | Zbl 0265.47046

[7] Goebel, K., Concise Course on Fixed Point Theorems, Yokohama Publishers, Yokohama, 2002. | Zbl 1066.47055

[8] Goebel, K., Kirk, W. A., Topics in metric fixed point theory, Cambridge University Press, Cambridge, 1990. | Zbl 0708.47031

[9] Goebel, K., Marino, G., Muglia, L., Volpe, R., The retraction constant and minimal displacement characteristic of some Banach spaces, Nonlinear Anal. 67 (2007), 735-744.[WoS] | Zbl 1126.46010

[10] James, R. C., Uniformly non-square Banach spaces, Ann. of Math. 80 (1964), 542-550. | Zbl 0132.08902

[11] Kirk, W. A., Sims, B. (Eds.), Handbook of Metric Fixed Point Theory, Kluwer Academic Publishers, Dordrecht, 2001. | Zbl 0970.54001

[12] Lin, P. K., Sternfeld, Y., Convex sets with the Lipschitz fixed point property are compact, Proc. Amer. Math. Soc. 93 (1985), 633-639. | Zbl 0566.47039

[13] Piasecki, Ł., Retracting a ball onto a sphere in some Banach spaces, Nonlinear Anal. 74 (2011), 396-399. [WoS] | Zbl 1208.47050