The object of the present paper is to solve Fekete-Szegö problem and determine the sharp tipper bound to the second Hankel determinant for a certain class ℛλ(a, c, A, B) of analytic functions in the unit disk. We also investigate several majorization properties for functions belonging to a subclass ℛλ(a, c, A, B) of ℛλ(a,c, A, B) and related function classes. Relevant connections of the main results obtained here with those given by earlier workers on the subject are pointed out.
@article{bwmeta1.element.doi-10_1515_umcsmath-2015-0007, author = {Jagannath Patel and Ashok Kumar Sahoo}, title = {On certain subclasses of analytic functions associated with the Carlson--Shaffer operator}, journal = {Annales UMCS, Mathematica}, volume = {68}, year = {2015}, zbl = {1311.30003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_umcsmath-2015-0007} }
Jagannath Patel; Ashok Kumar Sahoo. On certain subclasses of analytic functions associated with the Carlson–Shaffer operator. Annales UMCS, Mathematica, Tome 68 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_umcsmath-2015-0007/
[1] Altinta,s, O., Özkan, O., Srivastava, H. M., Majorization by starlike functions of complex order, Complex Var. 46 (2001), 207-218. | Zbl 1022.30016
[2] Caplinger, T. R., Causey, W. M., A class of univalent functions, Proc. Amer. Math. Soc. 39 (1973), 357-361.[Crossref] | Zbl 0267.30010
[3] Carlson, B. C., Shaffer, D. B., Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal. 15 (1984), 737-745. | Zbl 0567.30009
[4] Duren, P. L., Univalent Functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer-Verlag, New York, USA, 1983.
[5] Fekete, M., Szegö, G., Eine Bemerkung ¨uber ungerede schlichte funktionen, J. London Math. Soc. 8 (1933), 85-89.[Crossref] | Zbl 59.0347.04
[6] Goyal, S. P., Goswami, P., Majorization for certain subclass of analytic functions defined by linear operator using differential subordination, Appl. Math. Letters 22 (2009), 1855-1858.[Crossref] | Zbl 1182.30013
[7] Goyal, S. P., Bansal, S. K., Goswami, P., Majorization for certain classes of functions by fractional derivatives, J. Appl. Math. Stat. Informatics 6(2) (2010), 45-50.
[8] Janteng, A., Halim, S. A., Darus, M., Coefficient inequality for a function whose derivative has a positive real part, J. Inequal. Pure Appl. Math. 7 (2006), Art. 50 [http://jipam.vu.edu.au/]. | Zbl 1134.30310
[9] Janteng, A., Halim, S. A., Darus, M., Estimate on the second Hankel functional for functions whose derivative has a positive real part, J. Quality Measurement and Analysis 4 (2008), 189-195.
[10] Juneja, O. P., Mogra, M. L., A class of univalent functions, Bull. Sci. Math. (2) 103 (1979), 435-447. | Zbl 0419.30014
[11] Keogh, F. R., Merkes, E. P., A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969), 8-12.[Crossref] | Zbl 0165.09102
[12] Koepf, W., On the Fekete-Szegö problem for close-to-convex functions. II, Arch. Math. (Basel) 49 (1987), 420-433.[Crossref] | Zbl 0635.30020
[13] Koepf, W., On the Fekete-Szegö problem for close-to-convex functions, Proc. Amer. Math. Soc. 101 (1987), 89-95. | Zbl 0635.30019
[14] Libera, R. J., Złotkiewicz, E. J., Early coefficient of the inverse of a regular convex function, Proc. Amer. Math. Soc. 85 (2) (1982), 225-230.[Crossref] | Zbl 0464.30019
[15] Libera, R. J., Złotkiewicz, E. J., Coefficient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc. 87 (2) (1983), 251-257. | Zbl 0488.30010
[16] Ma, W. C., Minda, D., A unified treatment of some special classes of univalent functions, Proceedings of the Conference on Complex Analysis (Tianjin, 1992), Z. Li, F. Ren, L. Yang and S. Zhang (Eds.), Int. Press, Cambridge, MA, 1994, 157-169. | Zbl 0823.30007
[17] MacGregor, T. H., Functions whose derivative have a positive real part, Trans. Amer. Math. Soc. 104(3) (1962), 532-537.[Crossref] | Zbl 0106.04805
[18] MacGregor, T. H., The radius of univalence of certain analytic functions, Proc. Amer. Math. Soc. 14 (1963), 514-520.[Crossref] | Zbl 0114.28001
[19] MacGregor, T. H., Majorization by univalent functions, Duke Math. J. 34 (1967), 95-102.[Crossref] | Zbl 0148.30901
[20] Miller, S. S., Mocanu, P. T., Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker Inc., New York and Basel, 2000.
[21] Mishra, A. K., Kund, S. N., The second Hankel determinant for a class of analytic functions associated with the Carlson-Shaffer operator, Tamkang J. Math. 44(1) (2013), 73-82. | Zbl 1278.30016
[22] Nehari, Z., Conformal Mapping, McGraw-Hill Book Company, New York, Toronto and London, 1952. | Zbl 0048.31503
[23] Noonan, J. W., Thomas, D. K., On the second Hankel determinant of areally mean p-valent functions, Trans. Amer. Math. Soc. 223 (1976), 337-346. | Zbl 0346.30012
[24] Noor, K. I., Hankel determinant problem for the class of functions with bounded boundary rotation, Rev. Roum. Math. Pures Appl. 28 (1983), no. 8, 731-739. | Zbl 0524.30008
[25] Owa, S., Srivastava, H. M., Univalent and starlike generalized hypergeometric functions, Canad. J. Math. 39 (1987), 1057-1077. | Zbl 0611.33007
[26] Ruscheweyh, St., New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109-115.[Crossref] | Zbl 0303.30006
[27] Silverman, H., Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975), 109-116.[Crossref] | Zbl 0311.30007
[28] Srivastava, H. M., Karlson, P. W., Karlsson, Per W., Multiple Gaussian Hypergeometric Series (Mathematics and its Applications), A Halsted Press Book (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1985.