If (M,g) is a Riemannian manifold, we have the well-known base preserving vector bundle isomorphism TM ≅ T∗ M given by υ → g(υ,−) between the tangent TM and the cotangent T∗ M bundles of M. In the present note, we generalize this isomorphism to the one T(r)M ≅ Tr∗ M between the r-th order vector tangent T(r)M = (Jr(M,R)0)∗ and the r-th order cotangent Tr∗ M = Jr(M,R)0 bundles of M. Next, we describe all base preserving vector bundle maps CM(g) : T(r)M → Tr∗ M depending on a Riemannian metric g in terms of natural (in g) tensor fields on M.
@article{bwmeta1.element.doi-10_1515_umcsmath-2015-0006, author = {Jan Kurek and W\l odzimierz M. Mikulski}, title = {The natural transformations between r-tangent and r-cotangent bundles over Riemannian manifolds}, journal = {Annales UMCS, Mathematica}, volume = {68}, year = {2015}, zbl = {1312.58003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_umcsmath-2015-0006} }
Jan Kurek; Włodzimierz M. Mikulski. The natural transformations between r-tangent and r-cotangent bundles over Riemannian manifolds. Annales UMCS, Mathematica, Tome 68 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_umcsmath-2015-0006/
[1] Epstein, D. B. A., Natural tensors on Riemannian manifolds, J. Diff. Geom. 10 (1975), 631-645. | Zbl 0321.53039
[2] Kobayashi, S., Nomizu, K., Foundations of Differential Geometry. Vol. I, J. Wiley- Interscience, New York-London, 1963. | Zbl 0119.37502
[3] Kolář, I., Michor, P. W., Slovák, J., Natural Operations in Defferential Geometry, Springer-Verlag, Berlin, 1993. | Zbl 0782.53013
[4] Kolář, I., Vosmanská, G., Natural transformations of higher order tangent bundles and jet spaces, Čas. pĕst. mat. 114 (1989), 181-186. | Zbl 0678.58002
[5] Kurek, J., Natural transformations of higher order cotangent bundle functors, Ann. Polon. Math. 58, no. 1 (1993), 29-35. | Zbl 0778.58003
[6] Mikulski, W. M., Some natural operators on vector fields, Rend Math. Appl (7) 12, no. 3 (1992), 783-803. | Zbl 0766.58005
[7] Nijenhuis, A., Natural bundles and their general properties Diff. Geom. in Honor of K. Yano, Kinokuniya, Tokyo (1972), 317-334.
[8] Paluszny, M., Zajtz, A., Foundation of the Geometry of Natural Bundles, Lect. Notes Univ. Caracas, 1984.