We introduce a seminorm for bounded linear operators between Banach spaces that shows the deviation from the weak Banach-Saks property. We prove that if (Xν) is a sequence of Banach spaces and a Banach sequence lattice E has the Banach-Saks property, then the deviation from the weak Banach-Saks property of an operator of a certain class between direct sums E(Xν) is equal to the supremum of such deviations attained on the coordinates Xν. This is a quantitative version for operators of the result for the Köthe- Bochner sequence spaces E(X) that if E has the Banach-Saks property, then E(X) has the weak Banach-Saks property if and only if so has X.
@article{bwmeta1.element.doi-10_1515_umcsmath-2015-0005, author = {Andrzej Kryczka}, title = {Deviation from weak Banach--Saks property for countable direct sums}, journal = {Annales UMCS, Mathematica}, volume = {68}, year = {2015}, zbl = {06418153}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_umcsmath-2015-0005} }
Andrzej Kryczka. Deviation from weak Banach–Saks property for countable direct sums. Annales UMCS, Mathematica, Tome 68 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_umcsmath-2015-0005/
[1] Banach, S., Saks, S., Sur la convergence forte dans les champs Lp, Studia Math. 2 (1930), 51-57. | Zbl 56.0932.01
[2] Beauzamy, B., Banach-Saks properties and spreading models, Math. Scand. 44 (1979), 357-384. | Zbl 0427.46007
[3] Brunel, A., Sucheston, L., On B-convex Banach spaces, Math. Systems Theory 7 (1974), 294-299. | Zbl 0323.46018
[4] Erdös, P., Magidor, M., A note on regular methods of summability and the Banach- Saks property, Proc. Amer. Math. Soc. 59 (1976), 232-234. | Zbl 0355.40007
[5] Krassowska, D., Płuciennik, R., A note on property (H) in Köthe-Bochner sequence spaces, Math. Japon. 46 (1997), 407-412. | Zbl 0911.46003
[6] Krein, S. G., Petunin, Yu. I., Semenov, E. M., Interpolation of linear operators, Translations of Mathematical Monographs, 54. American Mathematical Society, Providence, R.I., 1982.
[7] Kryczka, A., Alternate signs Banach-Saks property and real interpolation of operators, Proc. Amer. Math. Soc. 136 (2008), 3529-3537.[WoS] | Zbl 1160.46014
[8] Kryczka, A., Mean separations in Banach spaces under abstract interpolation and extrapolation, J. Math. Anal. Appl. 407 (2013), 281-289.[WoS] | Zbl 06408407
[9] Lin, P.-K., Köthe-Bochner function spaces, Birkhäuser Boston, Inc., Boston, MA, 2004. | Zbl 1054.46003
[10] Lindenstrauss, J., Tzafriri, L., Classical Banach spaces. II. Function spaces, Springer- Verlag, Berlin-New York, 1979. | Zbl 0403.46022
[11] Mastyło, M., Interpolation spaces not containing l1, J. Math. Pures Appl. 68 (1989), 153-162. | Zbl 0632.46066
[12] Partington, J. R., On the Banach-Saks property, Math. Proc. Cambridge Philos. Soc. 82 (1977), 369-374. | Zbl 0368.46018
[13] Rosenthal, H. P., Weakly independent sequences and the Banach-Saks property, Bull. London Math. Soc. 8 (1976), 22-24.
[14] Szlenk, W., Sur les suites faiblement convergentes dans l’espace L, Studia Math. 25 (1965), 337-341. | Zbl 0131.11505