On certain generalized q-Appell polynomial expansions
Thomas Ernst
Annales UMCS, Mathematica, Tome 68 (2015), / Harvested from The Polish Digital Mathematics Library

We study q-analogues of three Appell polynomials, the H-polynomials, the Apostol-Bernoulli and Apostol-Euler polynomials, whereby two new q-difference operators and the NOVA q-addition play key roles. The definitions of the new polynomials are by the generating function; like in our book, two forms, NWA and JHC are always given together with tables, symmetry relations and recurrence formulas. It is shown that the complementary argument theorems can be extended to the new polynomials as well as to some related polynomials. In order to find a certain formula, we introduce a q-logarithm. We conclude with a brief discussion of multiple q-Appell polynomials.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:270016
@article{bwmeta1.element.doi-10_1515_umcsmath-2015-0004,
     author = {Thomas Ernst},
     title = {On certain generalized q-Appell polynomial expansions},
     journal = {Annales UMCS, Mathematica},
     volume = {68},
     year = {2015},
     zbl = {1308.05021},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_umcsmath-2015-0004}
}
Thomas Ernst. On certain generalized q-Appell polynomial expansions. Annales UMCS, Mathematica, Tome 68 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_umcsmath-2015-0004/

[1] Apostol, T. M., On the Lerch zeta function, Pacific J. Math. 1 (1951), 161-167. | Zbl 0043.07103

[2] Dere, R., Simsek, Y., Srivastava, H. M., A unified presentation of three families of generalized Apostol type polynomials based upon the theory of the umbral calculus and the umbral algebra, J. Number Theory 133, no. 10 (2013), 3245-3263.[WoS] | Zbl 1295.11023

[3] Ernst, T., A comprehensive treatment of q-calculus, Birkhäuser, Basel, 2012. | Zbl 1256.33001

[4] Ernst, T., q-Pascal and q-Wronskian matrices with implications to q-Appell polynomials, J. Discrete Math. 2013. | Zbl 1295.05060

[5] Jordan, Ch., Calculus of finite differences, Third Edition, Chelsea Publishing Co., New York, 1950.

[6] Kim M., Hu S., A note on the Apostol-Bernoulli and Apostol-Euler polynomials, Publ. Math. Debrecen 5587 (2013), 1-16.[WoS] | Zbl 1324.11022

[7] Lee, D. W., On multiple Appell polynomials, Proc. Amer. Math. Soc. 139, no. 6 (2011), 2133-2141. | Zbl 1223.42020

[8] Luo, Q.-M., Srivastava, H. M., Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials, J. Math. Anal. Appl. 308, no. 1 (2005), 290-302. | Zbl 1076.33006

[9] Luo, Q.-M., Srivastava, H. M., Some relationships between the Apostol-Bernoulli and Apostol-Euler polynomials, Comput. Math. Appl. 51, no. 3-4 (2006), 631-642. | Zbl 1099.33011

[10] Luo, Q.-M., Apostol-Euler polynomials of higher order and Gaussian hypergeometric functions, Taiwanese J. Math. 10, no. 4 (2006), 917-925. | Zbl 1189.11011

[11] Milne-Thomson, L. M., The Calculus of Finite Differences, Macmillan and Co., Ltd., London, 1951. | Zbl 59.1111.01

[12] Nørlund, N. E., Differenzenrechnung, Springer-Verlag, Berlin, 1924.

[13] Pintér, Á, Srivastava, H. M., Addition theorems for the Appell polynomials and the associated classes of polynomial expansions, Aequationes Math. 85, no. 3 (2013), 483-495.[WoS] | Zbl 1288.11022

[14] Sandor, J., Crstici, B., Handbook of number theory II, Kluwer Academic Publishers, Dordrecht, 2004. | Zbl 1079.11001

[15] Srivastava, H. M., Özarslan, M. A., Kaanoglu, C., Some generalized Lagrange-based Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials, Russ. J. Math. Phys. 20, no. 1 (2013), 110-120.[WoS] | Zbl 1292.11043

[16] Wang, W., Wang, W., Some results on power sums and Apostol-type polynomials, Integral Transforms Spec. Funct. 21, no. 3-4 (2010), 307-318. | Zbl 1203.33011

[17] Ward, M., A calculus of sequences, Amer. J. Math. 58 (1936), 255-266. | Zbl 62.0408.03