Let G1 and G2 be two given graphs. The Ramsey number R(G1,G2) is the least integer r such that for every graph G on r vertices, either G contains a G1 or Ḡ contains a G2. Parsons gave a recursive formula to determine the values of R(Pn,K1,m), where Pn is a path on n vertices and K1,m is a star on m+1 vertices. In this note, we study the Ramsey numbers R(Pn,K1,m), where Pn is a linear forest on m vertices. We determine the exact values of R(Pn,K1∨Fm) for the cases m ≤ n and m ≥ 2n, and for the case that Fm has no odd component. Moreover, we give a lower bound and an upper bound for the case n+1 ≤ m ≤ 2n−1 and Fm has at least one odd component.
@article{bwmeta1.element.doi-10_1515_umcsmath-2015-0002, author = {Binlong Li and Bo Ning}, title = {On path-quasar Ramsey numbers}, journal = {Annales UMCS, Mathematica}, volume = {68}, year = {2015}, zbl = {1308.05077}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_umcsmath-2015-0002} }
Binlong Li; Bo Ning. On path-quasar Ramsey numbers. Annales UMCS, Mathematica, Tome 68 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_umcsmath-2015-0002/
[1] Bondy, J. A., Murty, U. S. R., Graph Theory with Applications, American Elsevier Publishing Co., Inc., New York, 1976. | Zbl 1226.05083
[2] Chen, Y., Zhang, Y., Zhang, K., The Ramsey numbers of paths versus wheels, Discrete Math. 290 (1) (2005), 85-87.[WoS] | Zbl 1059.05074
[3] Dirac, G. A., Some theorems on abstract graphs, Proc. London. Math. Soc. 2 (1952), 69-81. | Zbl 0047.17001
[4] Faudree, R. J., Lawrence, S. L., Parsons, T. D., Schelp, R. H., Path-cycle Ramsey numbers, Discrete Math. 10 (2) (1974), 269-277.[Crossref] | Zbl 0293.05120
[5] Graham, R. L., Rothschild, B. L., Spencer, J. H., Ramsey Theory, Second Edition, John Wiley & Sons Inc., New York, 1990.
[6] Li, B., Ning, B., The Ramsey numbers of paths versus wheels: a complete solution, Electron. J. Combin. 21 (4) (2014), #P4.41. | Zbl 1305.05140
[7] Parsons, T. D., Path-star Ramsey numbers, J. Combin. Theory, Ser. B 17 (1) (1974), 51-58. | Zbl 0282.05110
[8] Rousseau, C. C., Sheehan, J., A class of Ramsey problems involving trees, J. London Math. Soc. 2 (3) (1978), 392-396.[Crossref] | Zbl 0393.05037
[9] Salman, A. N. M., Broersma, H. J., Path-fan Ramsey numbers, Discrete Applied Math. 154 (9) (2006), 1429-1436. | Zbl 1093.05043
[10] Salman, A. N. M., Broersma, H. J., Path-kipas Ramsey numbers, Discrete Applied Math. 155 (14) (2007), 1878-1884.[WoS] | Zbl 1128.05037
[11] Zhang, Y., On Ramsey numbers of short paths versus large wheels, Ars Combin. 89 (2008), 11-20. | Zbl 1224.05346